## UNIVERSITY WORK.

## MATHEMATICS.

ARCHIBALD MACMURCHY, M.A., TORONTO, EDITOR.

## SELECTED PROBLEMS.

By Angus MacMurchy, B.A., Toronto.

1. If 
$$a+b+c=0$$
, prove

$$\left(\frac{b^{3}-c^{3}}{a^{3}} + \frac{c^{3}-a^{3}}{b^{3}} + \frac{a^{3}-b^{3}}{c^{3}}\right)$$
$$\left(\frac{a^{3}}{b^{3}-c^{3}} + \frac{b^{3}}{c^{3}-a^{3}} + \frac{c^{2}}{a^{3}-b^{3}}\right) =$$

$$36-4(a^3+b^2+c^3)(a^{-3}+b^{-2}+c^{-3}).$$

2. If 
$$(z+x-y)(x+y-z) = ayz$$
  
 $(x+y-z)(y+z-x) = bzx$   
 $(y+z-x)(z+x-y) = cxy$ 

prove 
$$(abc)^{\frac{1}{2}} + a + b + c = 4$$
.

3. Solve the equations

$$(z+x-y) (x+y-z) = ax$$
  

$$(x+y-z) (y+z-x) = by$$
  

$$(y+z-x) (z+x-y) = cz.$$

4. Solve the equations

$$yz(y+z-x) = a$$
  

$$zx(z+x-y) = b$$
  

$$xy(x+y-z) = c.$$

5. Prove that if

$$ax + cy : by + dz = ay + cz : bz + dx =$$

az + cx : bx + dy

then each ratio =a+c:b+d; prove also that  $x^2+y^2+z^3=3xyz$ .

6. Show that the sum of *n* terms of the series 1+5+13+29+61+... is  $4(2^n-1)-3^n$ .

## SELECTED.

Solutions by Wilbur Grant, Collegiate Institute, Toronto.

(See MONTHLY for March, 1883.

1. 
$$y = \text{rate } B \text{ travels,}$$
  
 $y+2 = "A"$ 

7y + 7(y + 2) = distance between towns,  $g(y + 1) + g + \frac{y + 2}{2} = \cdots \qquad \cdots$  $7y + 7(y + 2) = g(y + 1) + g + \frac{y + 2}{2} y = 8,$ 

3. Let 
$$x^a + mx + x = 0$$
,  $bc = n$   
whose roots are  $a + \beta$  and  $a\beta$   
then  $a + \beta + a\beta = -m$   
 $a\beta(a + \beta) = n$   
but  $a + \beta = -\beta$   
 $a\beta = q$   
 $a\beta = q$   
 $a\beta = q$   
 $a\beta = q$   
 $a\beta = q$ 

distance = 126 miles.

 $\therefore = n \text{ is } x^2 + (p - q)x - pq = 0.$ 4. General expression will be

$$S = \frac{n}{2} \left\{ 2a + \widehat{n - 1} cd \right\}$$

S of odd terms =

$$\frac{n+1}{4}\left\{2a+\left(\frac{n+1}{2}-1\right)2cd\right\}$$

S of even terms =

$$\frac{n-1}{4}\left\{2a+2cd+\left(\frac{n-1}{2}-1\right)2cd\right\}$$

... difference =  $a + \frac{n-1}{2}cd$ .

Consider the plank in equilibrium about the edge of the bench on the side on which the weights are placed.

Let w = weight of plank, a = length of plank, x = distance from the weight to edge of bench in first case: taking moments about this edge.

I. 
$$w\left(\frac{a}{2} - x\right) = 200 \times x$$
.  
II.  $w\left(\frac{a}{2} - \overline{x+2}\right) = 120 \times (x+2)$ .  
III.  $w\left(\frac{a}{2} - \overline{x+6}\right) = 60(x+6)$ .

Eliminating a and x we find w=24 lbs.

6. Let r = radius of each bullet,  $a = s_r \text{ cific gravity of 1st bullet}$ ,