In making field tests by the above described method of different samples of sand, use that which shows the least percentage of voids.

Wash 100 c.c. of the sand in 100 c.c. of water by shaking together in a bottle, decant water into a graduated glass tube; again wash sample as before and decant water into the glass tube, stand until settled and read amount of clay or loam.

Table 1.

100 C. C. DRY SAND ADDED TO 100 C. C. WATER.

Water rose to	SAND SWELLED IN VOLUME TO FOLLOWING C.C.														
	10J Constant	101	102	103	104	105	106	107	108	109	110	111	112	113	116
	PERCENTAGE OF WORKING VOIDS.														
150	50	505	50°	514	519	524	528	538	537	541	545	55	553	557	561
151	49	495	50	505	51	. 514	519	523	528	53 ²	536	54	544	548	552
152	48	485	49	495	50	505	50°	514	519	523	527	531	536	539	543
153	47	475	48	485	49	495	50	505	50°	514	518	523	526	53	535
154	46	465	471	476	48	486	491	495	50	505	509	514	517	522	526
155	45	455.	461	466	471	476	481	486	491	495	50	504	508	513	517
156	44	445	451	456	461	467	472	477	481	486	491	495	50	504	508
157	43	435	441	446	451	457	462	467	472	477	482	486	491	495	50
158	42	425	431	437	442	447	453	458	463	468	473	477	482	486	491
159	41	415	421	427	433	438	443	449	454	459	464	468	473	477	482
160	40	40°	412	417	423	428	434	439	444	449	455	459	464	469	473
161	39	396	402	408	413	419	424	43	435	44	445	45	455	46	464
162	38	386	392	398	404	409	415	421	425	431	436	441	446	451	456
163	37	376	38 ²	388	394	40	408	411	416	422	427	432	48	442	447
164	36	366	373	379	385	39	398	402	407	413	418	423	428	433	438
165	.35	35 ⁶	363	369	375	38	387	392	398	404	409	414	419	424	420
166	34	346	353	359	365	371	377	383	389	394	40	405	41	415	421
167	33	336	343	349	35 ⁶	361	368	374	38	385	391	398	401	407	412
168	32	327	333	34	346	35 ²	358	364 .	37	376	382 .	386	392	39 ^d	403
169	31	317	324	33	337	342	340	355	361	367	373	378	383	389	394
170	30	307	314	32	327	332 •	339	346	35 ²	358	364	369	37	38	386

That the reader may have confidence in the methods above described in ascertaining the characteristics of sand which will produce maximum density, some of the experiments made by Mr. Moyer and published in the pamphlet heretofore referred to, will be described.

The use of a graduated glass tube of 1½ inches to 2½ inches in diameter containing 200 to 250 c.c. might appear to some engineers as being unreliable on account of the small quantities tested and the probable variation of volume. Also the theory of capillary attraction prying apart the grains of sand of certain characteristics might seem to be unsound, but numerous tests seem to bear out this theory. At any rate

Table 2.

Proportion	100 c.c. Sand gave a Volume of Mortar of		Briquettes Strength 28 days	Collected on Sieve.	%
1:11	125 c.c	407	524		
				10	,003
1:13	120 c.c.	335	445	20	.004
1:2	120 c.c.	275	396	20	.004
				30	.01
1:21	115 c.c.	277	367		
	110		004	50	.314
1:21	110 c.c.	255	334	Through	.66°
1:23	110 c.c.	211	282	Imough	.00
1:3	110 c.c.	181	255		

 5_{16}^{8} oz. Cement figured as = to 100 c.c. which is in same proportion as 94 lbs.=one cu. ft.

such peculiar characteristics have been noted by a number of engineers, but the writer has not yet run across any other theory which cannot be explained away. Some say that the head of the water used has different effects, that if a larger amount of water was used instead of 100 c.c., the results would be different. The writer, however, has not found this to be a fact and furthermore it would then be difficult to account for the sand which did not swell at all in volume.

Water must be clear, odorless and tasteless. If there is taste or odor, the water must be analyzed, the chemist to advise if there is sufficient percentage of any elements present to be injurious to Portland cement.

The most important ingredient in concrete is Portland cement, as it is this material which forms the bond. The other aggregates being usually stronger, upon the uniform strength of the cement depends the strength of the concrete.

Table 3.

Voids n Sand.	PROPORTIONS. Figuring actual volume of 1 bbl. cement as packed by Mfgrs, to =3.8 cu. ft. and assuming 1 bag=1 cu. ft.	1 cu. ft. Figures	Voids in Sand.	PROPORTIONS. Figuring actual volume of 1 bbl. cement as packed by Mfgrs. to=3.8 cu. ft. and assuming 1 bag=1 cu. ft.	1 cu ft Figures
25	cu. ft. 1:3.76	1:33	38	cu. ft. 1:2,47	1:21/2
26	1:3.61	1:31	39	1:2.41	1:21
27	1:3.48	1:31	40	1:2.35	1:21
28	1:3.35	1:31	41	1:2.29	1:21
29	1:3.24	1:31	42	1:2.23	1:21
30	1:3.13	1:31	43	1:2,18	1:21
31	1:3.03	1:3	44	1:2.13	1:21
32	1:2.93	1:3	45	1:2.09	1:2
33	1:2.85	1:23	46	1:2.04	1:2
34	1:2.76	1:23	47	1:2	1:2
35	1:2.66	1:23	48	1:1.96	1:2
36	1:2.61	1:21	49	1:1.91	1:2
37	1:2.54	1:21	50	1:1.88	1:13

The selection of stone, screenings, slag, cinders, sand or other ingredients can be determined often by sight or touch, or at least by simple tests. Portland cement tests require experts of some years' experience; the results of known laboratory tests are merely a guide from which deductions may be made only by the best scientific understanding available. Owing to the variable conditions surrounding such tests, the results cannot be absolute.

Each manufacturer exploits his particular brand as the best cement, some claiming extraordinary fine grinding the criterion, others larger bulk per barrel, others low lime content, others high lime content and hard burned clinkers, etc., etc., and all of them claim the strongest by test, which claims they support by various published test sheets.

Table 4.

Weight per Cubic Foot-lbs	Gravel (Pebbles) without Sand	Sandstone	Limestone medium soft	Limestone medium hard; Sandstone hard	Granite Blue stone Limestone hard	Granite hard Trap medium	Trap hard
75 80	54 51	50 47	52 49	54 51	52	=	=
85 90 95	48 45 42	43 40 37	45 42 39	48 45 41	50 47 44	51 48 46	50 47
100 105 110	39 36 33	33 30 26	36 33 29	38 35 32	41 38 35	43 40 37	45 42 39
115 120 125	30 27 —	Ξ	<u>26</u>	29 26 —	32 29 26	34 31 28	36 34 31
130 135	=	=	=	=	=	26	28 25

There have been carried on a large number of experiments based largely on laboratory methods, which experiments tend to show that 3.8 cu. ft. to the barrel of Portland cement weighing 376 lbs. net, is approximately correct.