Calcul de la concentration iomique

- 4.50 grains de Ca CO₈ contiennent $\frac{40}{100} \times 4.50$ ou 1.8 grain de Ca; et par conséquent 4.50-1"8 ou 2.7 grains de CO₈.
- 5.41 grains de Mg CO₃ contiennent $\frac{24}{84} \times 5.41$ ou 1.57 grain de Mg; et par conséquent, 5.41-1.57 ou 3.84 grains de CO₃.
- 13.34 grains de Na, CO, contiennent $\frac{46}{106} \times 13.34$ ou 5.89 grains de Na; et par conséquent 13.34-5.89 ou 7.45 grains de CO.
- 13.37 grains de Na₈ SO₄ contiennent $\frac{46}{142} \times 13.37$ ou 4.27 grains de Na; et par conséquent 13.37-4.27 ou 9.10 grains de SO₄.
- 3.99 grains de Na Cl contiennent $\frac{23}{58.5} \times 3.99$ ou 1.55 grain de Na; et par conséquent 3.99-1.55 grains de Cl.

Ceci donne en tout:

Mg	1.57	grains	par	gallon.
NaCO ₄	1.71	#		# 1
504	0.10			
Cl	2.44	*		*
4	0.61			

On multiplie chacune des valeurs ci-dessus par son coefficient de réaction tel que donné dans un tableau précédent afin de convertir les poids physiques en valeurs de réaction. Nous obtenons les résultats suivants:

Ca. Mg. Na.	0·90 1·29 5·07	
CO ₈	4.68 1.89 0.69	7.26
		7.26

Pour faciliter la comparaison chimique entre différentes analyses, on exprime les valeurs de réaction en parties dans 100. On obtient le résultat final suivant pour les analyses: