INTERCOLOVIAL RAIIWAY BRIDGE AT RIVIELE DU LOUP.

We are indelted for the following particulars to Mr. Hazelwool, late engtueer of the st. Lawrence District. It is built on the "Howe I'russ" principle. It was designed by Mr Sandford Fleming, the chef engincer of the Intercolonial Railway, and is composed of three spans of 100 feot each, with roadway on top. The depth of the truss is 18 feet, and the road-way above the fed of the river 40 feet. 'I'his bridge is supposed to be one of the strongest Howe trubses at present in existence. There is a hittle bridge of 30 fect span on the west side of this one, but connected with it, for the purpose of carrying the rallway over the Temiscouata road. The Rividre du Loup and Isle Verte bridges, together with the one over the Eissiquash Miver, in Nova Scotia, are the only wooden bridges on the entire line of tho Intercolonial IIailway. They were bullt before the commissioners consented to comply with the auggestions of the chief engineer to have them all of iron Our illustration is from a photograph by Mr. W. A. Campbell, of Rivièro du Loup, en las.

LEONARDO DA VINCI AS AN ENGINEER.

'Chis was the title of a lecture by Mr. A. Hildobrandt, C.E., delivered before the members of the Scientific and Mechanical Society Leonardo da Vinci is generally accepted as a great painter and sculytor, but of his other qualities little or nothing hys been known Dr Herman Guathe, of Berlin, has recently published a hrochure based upon the study of da Vuci's M.S S , which are deposited in the libraries of Italy, Ports, and Londhu, showing that the man wes really a universal geaius; ind if regard be had to the time in which he lived, he was one of, it not the most wonderful man which our planet ever produced The brochure, which he illustrated with woodcuts copied from Leonarde's sketches, and one lithographed tacsimile of a marhine with all its details and explanations in Italian, written from right to left-one of his peculiarities-form. ed the text of the lecture from which we gather the following.

Leoundo da Yinci lived from 1152 to 1519 , was born in Elorence, whre he acquired a knowludge, among other things, of weaving, metal founding, and metal work, such as goldsmithing, which were considered by his master to be necessary proliminaries to painting and sculpture, in whel latter he made such rapid progress, that after having panted an angel in one of his diaster's pictures the latter put down his brush and pallet to take it up no more. We know what a high position Vinci afterwards occupied in the artistic world-that he stood on a level with Michael Angelo, his contemporary. It is not unnatural to assume, with our present-day experience, that to acquire such excellence an absulute specialty must be made of the particular calling, but the contrary fact is one of the most striking features of the old master. To what a state of perfection be brought music may be inferred when we are told that he went victoriously from a competition for the place of first violiaist to the Duke Ludwig Mario sforza, who thereupon called him to Milan in 1484, not without wanting and finding in bim the greatest painter and inventor of Italy. He there founded an academy of science, he painted world-famed pictures-such as the "Last Supper," which still exists at least in copies)-hr modelled the equestrian statue of the Duke's father (which, unfortunately, has got destroyed), he was the Duke's military engineer, and the part he took in arclitectural work rannot havo been a small one, when it is due to his infuence that the then provailing stgle of late Gothe gave way to Roman and Greek. He wrote several works on painting, light and shade, and other tracts, and designed improved machines and implements, studied anatomy-which be considered indispensable to the panter-and experimented and stadied naturo generally, which resulted in his philosophical reasonings and tracts exposing him at the same as a free-thinker, to which he really aspired in reference to the then prevailing dogma of the Church relative to the form of the earth. He aulapted, about this time, the Martegana canal for navigation, and constructed two otters for arrigation. Having left and eeturned to Milan several times after the removal of the Duke Ludwig Sforza, occupied in various capacities as retired philosopher, private painter and sculptor, pannter to the ling of France, as engincer-general of fortifications in Florence, Sienna and France, he designed in the last two years of his life the canal of Ramorantin, which was carried out after his
death. He was buried in Amboise: Napoloon III, in 1863 caused a memorial ty be orected to him after his grave had been again discover d, and a monument was aloo urected to his memory in Milin.

As a philosopher, no doultis entertained that all or most of tho varinus discoveries recorde 1 in his MSS. are his orminal ideas, as thev entirely differ from the theories of Aristotic, who lived loug hefore him, and conform very closely with the notions aecepted in modern timen, which are alnost invariably accreditid to the period of Galileo, who lived much later (from 1602, His knowledge of the laws in natural science is mostly avident from hir application of the same to his every day practice $1[$. was an ande mathematictan, the invention of the signs + and - is assigned to him, as being one of the first to make use of thein. He attempted to square the circle, but gave up the attempt, as it was "ime possible to do it with absolute accuracy." Ho stu.lied and wroto much of perspective, an | laid duwn rules, which hold good at the present day IIe wus well acquainted with the laws of the lever, and made familiar use of them, this applies also to the inclined plane, and his pulley blocks were in continual use. He had also a very clear notion of the weight of bodies and of the lav of gravitation His laws of motion do him credit, and the perpetum molile is studied and condemned in no doubtfal terms He studied the strengith of materiats, and seems to have heen conversant with the laws of fiction. In hydraulics he was particularl; at hume, as may beinterred from his practical works of san' onstruction, his waterwheols and turbines are admirnble, and the laws upon whach the hydranl: n press is based were p recetly clear to him. If also investigated the waves of fluida and sound, he bored artesian welle and coustricted pumps. How well he understood the laws of combustion will be understood when we are told that he was the first to makr use of lamp chimneys, and several sketa hirs of candle flames prove that he had hold of the right principle He occupied himself, also, with diving and attempts at flying, and devised apparatus for these purposes. It is, further, more than probnbl that Leviardo was the inventor of the camera obscura, and his knowledge of astronomy deserves no less attention especially with regard to the sun, the moon, and the earth, and his ideas, although not as definitely expresser no in modern times, aru nut at variance with what is now known Nor was b tany neglected by hum; healso made the first attempt to cut tigures in woud, e.e. wood engraving.

It is not presumed to credit him with the in, ention of all the various machines of whirh sketches are fuund in has yiss., but tosay that he made himbelf acquainted with the rame to such an extent as the records show, is almust moro than the first engineers of the present day can be expected to attana, to say nothine of the fact that he did design some of them and taprove others, and his studies of the variuld mechanism are of the most interesting kind, and embrace almost all devices known st the present day 'Ihat he was well acquainted with the properties of iron is certain, for in bis MSS. is preserved a drawing which is, in all probability, an original design to stretch it, in fact, a rolling mill, to make the segmental sectioned bars from whict he made his cannons. He was undoubtedly an eminent metallurgist of his time. Among his other machines ara a boring machine fur wooden ppes, such as were and are still used for waterworks, an attempt to construct a planine machine, a file-cutting machine beyond which, says the author, we bave not yet got much), a das for stono and wood, and a very perfict spindle arrangement for spinniag. machines to make mpes, not differiag materially trom those in use at present, cloth-chearids machines, looms, haminers, draw benches, lifting apparatus and craucs, chatas, dyamometers, and many others Primitive though many of them be, some compare favourably with those in use at the present day

Waterprooning Cloth - Tweed cloth can be made waterprof by the following method. Into a bucket of soft water put dlb. sugar of lead and thb. powdered alum, stir this frequently until it becomes clear; pour of the clear liquor into another bucket, into which put the garment, and let it stand theren for twenty-four hours, and then hang up to dry, without wringing it, shen it will be found to be completely waterproof (proved.) This is preferable to the ordinary Macintosh waterproot, as it docs not impede the perspiration.

