after a few moments allowed for the reaction. Nata bene:— Be exceedingly careful in this respect in cases of poisoning by again soid

ing by oxalic acid.

VI. Chlorine (aqua chlori, calcaria chlorata, or sodium hypochlorate). To be used externally only, and in case of bites, stings, etc., of poisonous insects, reptiles, etc.

VII. Chromic acid and potassium permanganate. Remarks of No. VI. are

applicable to these substances.

Special antidotes, such as hydrogen peroxide against oxalic acid, sedium sulphate against baryta, etc., are treated of by Kobert in special chapters, and cannot be noted here.

PHYSIOLOGICAL ANTIDOTES.

Complete antagonism exists between muscarin and atropine, but while with atropine we can absolutely subdue the effects of muscarin, the latter acts incompletely as an antidote to atropine.

SYMPTOMATIC TREATMENT.

Treatment of morphine poisoning by atropine; atropine poisoning by pilocarpin; strychnine by chloral-hydrate; treatment of collapse-producing poisons by excitants; poisoning by alkalies with acids and vice versa.

PROPHYLACTIC TREATMENT.

The grubbing up and removal from around human residences of all poisonous plants, the destruction of poisonous reptiles, insects, animals. Atropine, stramonium, hyoseyamus, scopolia, digitalis, ricinus cytisus, hellebore, colchicum, cicuta, and aconite, should not be permitted to grow in gardens where children are allowed to run about.

Spoiled foods should be kept from exposure for sale, by police regulation. Such materials, when exposed, should be promptly confiscated.

Poisonous colors. Among these are those produced from arsenic, chromium, copper, lead, uranium, wolfrom, antimony, crocus martius, etc. Clothing, carpets, playthings, and all containers for food, etc., tinted with these colors, should come under police regulation.

Unhealthy dwellings, buildings and outbuildings. Poisonous gases are liable to proceed from such buildings, especially from those used in the manufacture of quicksilver and similarly poisonous articles,

Unhealthy surroundings. Manure piles, waste heaps, etc., should be brought to the attention of the authorities. In short.

The Physician must act on all occasions as the guide and adviser, the guardian of public and private health. He should never miss the opportunity of impressing upon the heads of families, especially the wives and mothers, the dangers of cooking in copper vessels, the use of tainted meats and vegetables, of leaky gas pipes, and all the perils which surround families of little children from poisonous plants, herbs, etc.—National Druggist.

Pharmaceutical Notes.

BY CLEMENT B. LOWE.*

Terebeaum or Terebeae has come into somewhat extensive use as a remedy for chronic bronchitis, and it is frequently an ingredient of cough mixtures, or is prescribed by itself.

On account of its slight solubility in water, and its somewhat unpleasant taste, it is best given in an emulsion.

The emulsion should be made by the addition of one drachm of powdered gum arabic for each fluid drachm of terebene.

The primary emulsion, consisting of gum and water, should first be carefully prepared and then the terebene should be slowly and carefully added.

The emulsion will be found quite a difficult one to make, the terebene being easily thrown out of solution.

Mustard Plasters.—The mustard plaster is one of the most important remedies kept in our pharmacies, and yet as far as I know none of the manufacturers have included in their directions that of wetting the plasters before using with only tepid water.

The acrid or volatile oils of mustard do not pre-exist as such in the seed, but are produced by the splitting up of the glucosides sinalbin or sinigrin, by the action upon them in the presence of moisture of the ferment called myrosin.

It is a fact that should be better known that myrosin is coagulated by water of a temperature of 140° F., and rendered incapable of action.

I have found that many people are under the impression that the plaster will be made the more active by dipping it into hot water, but the reverse is the case.

Syrup of Acacia.—It seems strange that the Pharmacopæia should have continued unchanged the formula for Syrup of Acacia.

In the Pharmacopeeia of 1870 the syrup was made directly from the gum, and we had a fairly stable preparation.

In the last two Pharmacopeias it is ordered to be prepared from the mucilage, which spoils quickly, and the sprup thus made would ferment in a few hours, unless the mucilage was freshly prepared.

The formula of Mucilage of Acacia can be improved upon by the use of chloroform water of the strength given in the British Pharmacopeia.

If the chloroform is objectionable from a therapeutical standpoint, a few minutes' exposure to heat will thoroughly dissipate it.

The most convenient way of dissolving the gum is by means of a dialyser.

Adulteration of Belladonna Root.— This last winter, on examining some belladonna root, I was surprised to find present a number of large pieces of poke root.

As the former root is indigenous to Europe and the latter to the United States, and as the structure of them is entirely different, it could hardly have been an accidental adulteration.

The cork layer of the belladonna is of a ve y light brown gray color, while that of the poke root is of a yellowish brown gray and marked by very characteristic transversely clongated corky warts of a lighter color.

The transverse section of the former shows a fine black cambium line, and the woodwedges, when present, are of a light yellow color, radially arranged; in the poke the wood tissue is whitish, and shows a decidedly concentric arrangement.

Camphor.—I have pleasure in calling to your attention an excellent article of camphor, made at the Sumitomo Refinery, Kobe, Japan, and imported by Smith, Kline & French Company.

It comes in boxes very neatly made of wood, pasteboard lined, containing one pound net by actual weight.

The style of package prevents evaporation, and being divided into ounce cakes there is no loss in retailing.

It is less translucent and crystalline than ordinary refined camphor, and is probably made by submitting powdered camphor to powerful pressure.

One part is perfectly soluble in 0.7 parts of alcohol, and sublimes without

leaving any residue.

It seems probable that in many industries Japan is going to be an active competitor, not only with European nations, but also with our own.

Fluid Extract Triticum Ropens.—The question is asked in Query'S, "What is the cause of the active effervescence which takes place when Fluid Extract Triticum Repens is added to a carbonate?"

If active effervescence occurs, I should think it due to fermentation having taken place.

The fluid extract is made by first porcolating with boiling water, afterwards evaporating and adding 25 per cent of alcohol.

As the medicinal constituents consist of three sugars, two of them directly fermentable, if too much time be taken in percolating and evaporating, there is apt to be some fermentation before the alcohol is added.

Bicycling.—I was much interested in an article on "The Bicycle in its Relation to the Physician," by Dr. S. Egbert, and think it worthy of a wide circulation.

I was pleased to find that his professional investigation of the subject coincided with my personal experience.

He claims that "if the wheel is properly adjusted to the rider, as far as weight, saddle, handle-bar and pedals are concerned, and above all an erect posture maintained, that cycling is one of the best forms of exercise attainable, developing the chest, increasing the lung capacity, and bringing into play the most important muscles of the body.

If bicycling is so beneficial to the physician, who ordinarily gets much more out-door exercise than the pharmacist;

Revel before the Pennsylvania Pharmacentical Association, June 14, 1891.