A FEW WORDS TO THE BOYS.

BOYS, as you are employed in the mill and schooling your minds and hands in the art of milling, do not forget that there is more to learn than how to clean wheat, grind, both, oil and take care of machinery: There are many other things necessary in the education of an accomplished miller, and in which practice only makes perfect. You must be a good julge of wheat knowing its value ly appearance when pricing it, and judging very nearly as to the amount in pounds of the kind of wheat it will take to make a barrel of four, and as to the amount of stuff not wheat which the article contains. You must know when wheat is or is not :nerchantable stock-whether it is in or out of milling condition. Some kinds of wheat yield hour largely, and with some n is exactly the reverse. Make a study of this that you may be able to know the kinds on sight. Some wheats make strong flour, others weak. Some wheats yicld white flour under any circumstances ; some dark or yellow flour under the best milling possible. You must know about this, that you may be enabled to mix so that the four will run unform in strength and color. Remember that successful milling is moneymaking milli - , and there are many things that must accord to man- success. Good flour may indicate nothing as to this success, for the high price it may bring may be more than overcone by the large anount of wheat consumed in its production. Big yield indicates nothng, as in obtaining the big yield the flour may be lowered in value to such an extent that the yield is of no avail in securing profit.
There are many millers \ln charge of prominent mills to day who are unable to tell whethet or not offal is properly cleaned. Make sure that you do not prove like one of these. Make flour a study, that you can tell something as to its quality at quick sight. Make offala study, that you may understand its condition ata glance. School yourself in figuring milling problems, partucularly those of yelds and percentages, and the minute total cost of manufacturing. This will prove a great incentive to watching and understanding the conduct of the business, the advantages of proper stock over the improper, the advantages of the competent over the incompetent er:gineer, the advantages of the competent mill employ ing good machines over the poorly-equipped mill em ploying worthless machines, and those of the fuel saving engine over the wasteful engine. Understanding the control of men, executive ablitit, is another thing, and is more dependent on training than on natural tact. It is an absolute necessity in the make up of a good miller, tor it is not always the man who doe= the most work spends the greatest number of hours in the mill and travels the longest distance in looking atter afaiars, who is the best miller, and accomplishes the most. A head miller may understand his business and work hard in attending to it , and yet fall far short as a competent head-miller, because, instead of being able to direct his men and keep them busy, he may allow them to trifie away their time; and, if not understanding the selection of associates who understood ther business, he may choose the incomptent. If not appreciating the value of the faithful man above the unfaithful, he may employ the wrong men and be compelled to make good the in. efficiency of help by his own personal excrition.
Remember that properly directed economy in everything, great and small, is a desirable characteristic in the miller. Economy, study and practice nakes perfect, and vigitance accomplishes wonders. Train yourself to watch suth things as that, the packer does not waste nails, linings, sacks and sack-twine, that the oiler does not waste oil, that the sweeper does not destroy brooms by carelessness. See in it well, that there are no little leaks through the mill or in the conduct of the husiness that are overlooked because of theri insignificance, for wastes, though amounting to but litte singly, may abibre gate enough to overcome entire profits, or create loss in stead of gain when margins are close.
Boys who do not observe and consider closely, who do not get old busincss heads on therr shoulders carly in life, are liable to pursue wrong courses, and in follow:
the "showy" example imitate the wrong men. if they see a miller careful and accurate in every detail of his business, they become impatient at what they con sider his slowness. For instance, it a muller, engaged in so simple a job as taking up or tightening a belt, is carc. ful in arriving at the exact proper tension before fasted. tening, and in making the tic exercises great care to draw every loop of the whang unformly tugh, they look on him as a " poke." while they will trok wuth admiratton on the miller who would quickly decide on proper length by guess. and to the "strecth or bust phan." Yet the "poke" is the.worthy example, for, while the beet fixed by the "rapid" workman mght prove too loose to per-
form is work, or seek early destruction while consuning power, by under strain, that fixed by the "poke" is apt to work :ddvantageously in every particular.- Modern ailler.

SSEWV:

Smokistack pansr.-a muxture of coletar and phambago, thinned with surpentine or benzine, makes the best paint for an iron smokestack.
peat iunir papek. - baper pulp frompaiatis a new lida. The fibrous peat is dried on trays and then treated so us to separate the clean fibre from which the pulp is made.
Onehatf ounce of camphor dissolved in one pound of metted hard. the scum removed, and a little graphite mixed with it, is zaid to be cacellent to keep tools from rusting.
To Remove: pant shots from Wood.-.To take spots of paint off wool, hys a thick coating of lume and soda mixed together over it, letting it stav twenty-fonr hours, then wash off with warm a:ater, and the spot will have disappeared.
To Fastr. HI matek to tron. - It is clatimed that zubler may be fastened to iron ly using a baint made by steeping powdered shellac in ten times its weight of concentrated aramonia, it should stand three or tour weeks before using.
To Make Matsesames Bxass,-Malleable brass is made by forming an alloy of therty-three parts of copper and twenty-five of zinc. The copper is first melted in a crucitlie which is loosely covered, after which the zinc, which has been purifed by sulphur. is auded.
Following is a statement of experiments made to enable an operatcr to tell the degree of heat in u furmace by the color of the flame: Faint red, $960^{\circ} \mathrm{F}$: : bright nd, $1.300^{\circ} \mathrm{F}$. : cherry red, I. 600° F. : dull orange. $2,000^{\circ} \mathrm{F}$. : bright orange, $2,100^{\circ} \mathrm{F}$. : white heat, $2,400^{\circ} \mathrm{F}$. : Urilliant white heat, $2,700^{\circ} \mathrm{F}$
Irregular power and light feed will cause buhrs to "jump." In cases where the mill is geared 100 high this difficulty increases Often when buhirs are "jumping" on a light feed with unsteady power, the difficulty may be obvisted by increasing the feed, which will nuke them run steady.
To Reidik Bollex Fuxsaces. - When you have to repair your boiler furnace, sajs the Stationary finkineer, and can't get any fire clay, take common enth mixed with water, in which you have dissolved a little rock, or other salt: use sanie as fire claythe furnace will tist fullv as long.
Wike belting.-A method of manulacturng wire belting con. sists in interweaving sections of coiled wire so form the length of a belt, inter weaving the ends of the sections with independent longfitudinal sections of coiled wire to form the edges of the bels, and finnlly solling the belt to flaten the links.
Bel.ting Cement. - Beits that have been loosened by getuing wet should be thoroughly dried and fastened together by inserting cement into the cracks with a knife. and hammering until dry. A good cement for this purpose is equal proportions of good glue and trussian gchunne dissolved in the same manner as ordinary slue.
Gikers Vaksisht for Mitmats. - For a green eransparent varnish for metals. grind a small quannity of Chinese blue with double the quantity of fincly-powdered chromate of potash fit requires the most elatorate grinding): add a sufficient quantity of copal vamish thinned with turpentinc. The tone may be altered by adding more or less of ofe or the other of the ingredients.

Hiany and from says that one of the neatest and best mays of testing the soundness of a boiker plate is to sling it up by the corners so that it will lie in a horizontal position, and seater a smalt quantity of dry sand evenly over the surface. By lapping the sheet lighty underneath, the sand wial be thrown of wherever the phate is solid, while in places where lamination or blister occurs the sind will rennin fired.
Fine Extinctustifer. -The ingredients of many of the fire exzunguishers now before the pullic are said to be eight pounds carbonate of sodh, four pounds alum, three pounds borax, one pound cartomate of potasth, and in enty-four pounds silicate of soda soluwon, these lexing of course mixed together; one and a hall pounds of this maxture is added to each gillun of water when required for use. the umeliness of appuicaton constatuung the important feature on the manter of eficiency.
To remuve Suliplemis' Miokns. -as is aell known, the removal of shepherds' marks from the wool occasions great troubse. They are frew wently cut out nith shears. This however, is difficull. costly, and tedous. A french firm teaived a patent some ume ago tor a process lif which they remove these marks quickly by sulmerging the raw or worked wool for fromi 35 to 20 minutes ma a bath licated to tos Falir., and contaning a sufficient quantity of wate: ghass to mince the solution to 20° B. and bessdes this poundis of sayp.
 sure shatonary engine the horse-power, may le computed by this rule- Multuply the area of the cylinder in suuare inches by the mann effective stean! pressure in pounds: again. multiply this product ty twice the length of the stroke in feet, muluplied by the muniker of revolutions per muntere, and dwade thus last produas by 33000 . Whe guotient will be the horse-poner imparted by the
 Ine the actual horse-pronet of the engire.
To remove one troublesome complaint that frequently causes grate lars so watp, have sutable sprice or clearness at each end of the har; and grate lant learers will prove more seniocable if they are phiced a short distance from end of the grate bar. leaving
space so that whatever falls nt the end many not lolige there. Soune grate bar learers are placed up to bridge bar st one end, and juin the dend plate at the opposite end. As these placess are noost likely to nccumulate ashes they spuedily choke up. If openings are not provided for their escapx:-Americun finginer.

Tine Whicut of Steam.-The weight of steam depends upon the pressure and dry:ness of the steam. Supposing the steam to be salurated, the welghts per cublic foot are ais follows: For a pressure of one pound per square inch above vacuum, .0030 pounds: two pounds nisolute, .0058 pounds: four pounds alisolute. . 0122 ; eight pounds absolute, . 02 t ; sixteen pounds abso${ }^{1}$ ute, or $\mathbf{t . 3}$ pounds above atmosphere as registered upon the ordinary steant gauge, .0431: thirty-two prounds absolute, or 17.3 pounds by the gaube, . 0789 ; sixty.four jounds absolute, or 49.3 pounds ly the gauge, , 1516; and at 228 pounds alsolute, or 183.3 pounds above atmosphere, .2gis pounds weight. A cubic foot of water at $62^{\circ} \mathrm{F}$. weights 62.355 pounds.
To Keel the Engine Cle:an,-Make a solution as follows: Dissolve a pound of concentrated lye in about two gallons of water and with a mop sutumte the engine with the liquid-beink carelul that it does not get into the oillholes of fournals und bearings. After the lye has "caten" all the grease and gum from surfices. dean perfectly by scraping and brushing, and apply a thin coat ef lead-paint. After this is thoroughly set, paint a deep black and varnish lieavily-sitiping or deconting can the done according to taste. After this the greater part of the works can be easily and quickly ciratied with a dusting brush or cloth, and escaped oil can le mopped off thoroughly with tunt litile trouble. A very small outliy of monicy and work thus invested will do nwav with much work to no purpise, in keeping the engine clean and neat in apjwance.
 acid, even at boiling heat, map be made by melting caoutchouc at a gentle heat and adding with constant stiring from 6108 per cent. of tallow: Then mix therewith enough diy.slaked lime to make the whole the consistency of soft paste ; finally add abou 20 per cent. of red lead. whereby lie mass immedately selas harid and dry. A solution of caoutchoue sa twice its weight of linsed oil, aided by heating, and the addtion of an equal weight of pipe clay, yields a plastic mass which will resilt most acids.
To Clean Brass. - An exchange gives ti:e following method of cleaning brass: Make a mixure of one part sommon nitric acid ant one part sulphuric acid in a stone jar: then place ready a pail of fesh water and a box of sawdust. Dip the anticies to bo cleaned in the acid, then tinse then in the water, and afterwist tub then with sawdust. This immediately changes them to a brilliant color. If the brass be greasy it nuust first be dipped in a stronc: scoution of caustic polash or soda. This cuts the grease so that the act has power to act.
Artjficial Whitestones. -The Guide Scientijiyme gives the following method of making antifcinal whitestones: Gelatise of good quality is dissolved in its own weight of nater, the operation being conducted in a dark room. To the solution 1% per cent. of bichromate of potash is added, which has previousty been discoived in a little water. A quantity of very fine emery, equal to nine times the weight of the gelation, is intimately mixed with she gelauine solution. Pulverized fint may be substituted for emers. The mass is nooded jato any dexired shape and is then consolidalod by heasy pressure. It is dried by exposure to sucoag sualight for several hours.
Puesextiation or Woob.-A simple method of treating wood with preservative solutions is employed in Norway for telegraph
poles Ater the poles are set in place a man goes from one to poles. After the poles are set in place a man goes from ore to nother with an auger. with which he bores a hole io eand poin oginnink at a point about 2 feet above the ground. and borin obliquelv downward, at as small an angle as possibe winh te axis of tire post, until the point of the auger reaches the center of the
stick The auget hole should be an inch in diameter, and, in telegraph poles of the ordinnty size. will hold easily + to 5 ounces of sulphate of copper, which is put into it in the form of coarsely: powdered crystals, and the opening then stopped wita a flug. the end of which is left projecting as a handie, so that it can be pulled out and repluced. It is found that the cristals of copper suiphate dissappear slowly, so that every three or fout months the charge must be renewed; white the wood, both above and below the aurer hate, even to the very top of the pote. gradually ssuct

Cleating hardwood lumbik.-Cleating is beneficial if done at the proper time. i, c., witen the plank conies from the saw and before it has been split by handling. After a split has opened a plank tno or three feet, a cleat cannot be put on securely enough to prevent the split from extending the first time the plank is handled of "dumped "from a truck. The proper way is for the mill hands of forenian to select the plank, generally the ones coming from the centre of the log, that indicate tor their appearance a tendency, by small checks or free straight grein, to be liable to split perhaps the whole Irngth of the plank, and at once mail on a cleat of some tough, strong wood. Oak or elm is best. Care should be taken that the cleat doess not extend beyond the edges of the phank or lap over the sides so as to be easily pulked off in handling, or take up extra room in stowing 11 shipped where freight is charged ly the culic foot instead of toard measuie. Dikenty of nails should lxe used. For two inch plank, the chents should be 3 inch thick and Gd or $8 d$ nals used. Nailing on strips of hath sonly a waste of trine and materiaL. Ash spliss more readily than any other plank, and the letter the quality and the freer from defects. the casier it splits. Inspectors usually take this fact mo consideration: and if the plank is otherwise periect, will measure down in width one or two inches. and grade it as firsts when it would be classed as seconds if ordinary square edged plank. Most of the best ash, oak and hickory is used for carriage material. and consequently cut into mmall and short pieces, and the quality is more invoortant than the width and leneths. In such kinds of lumler, knors are a much more serious defect than splits. Cients will help much to prevent the hatier if put on as suggested.

