Volume 26.

load element (see Fig. 3). The formulæ for δ_{mb} and δ_{mo} are analogous to that of δ_{ma} . The denominators of the equations for X_* , X_b and X_o are

$$\delta_{aa} = \int_{-\frac{1}{2}l}^{+\frac{1}{2}l} dx = l$$

$$\delta_{bb} = \int_{-\frac{1}{2}l}^{+\frac{1}{2}l} dx = -\frac{1}{12}$$

$$\delta_{00} = \int_{-\frac{1}{2}l}^{+\frac{1}{2}l} dx + li^{2} = -\frac{4}{45}f^{2}l + li^{2}.$$

The equations for the statically indeterminate quantities and now known:

for
$$x < 0$$
, $X_{*} = -\frac{1}{8} (1 + 2 - \frac{1}{l})^{2}$,
 $X_{*} = \frac{1}{2} (1 - \frac{x}{l}) (1 + 2 - \frac{x}{l})^{2}$.
For $x > 0$, $X_{*} = -\frac{1}{8} l (1 - 2 - \frac{x}{l})^{2}$,
 $X_{b} = -\frac{1}{2} (1 + \frac{x}{l}) (1 - 2 - \frac{x}{l})^{2}$,

For both x < 0 and x > 0,

$$X_{\alpha} = \frac{\mathbf{15}}{64} \frac{l}{f} \alpha \left(\mathbf{I} - 2\frac{x}{l}\right)^{2} \left(\mathbf{I} + 2\frac{x}{l}\right)^{2},$$

where $\alpha = \frac{\mathbf{I}}{\mathbf{I} + \frac{45}{4}\frac{i^{2}}{f^{2}}}.$

The bending moments and normal forces in the arch can then be computed. The normal force N is made equal to X_0

$$N = X_{\circ} = \frac{\mathbf{1}_{5}}{4} \frac{l}{f} \propto \left[\left(\frac{x}{l}\right)^{2} - \frac{\mathbf{1}}{4}\right] = \frac{l}{f} N_{1}.$$

The value of N_1 depends solely on the value of the ratio x

- and on the value of α . Below, N_1 is given for $\alpha = \tau$

and $\alpha = .9$, and — varying with differences of .1.

$$\frac{x}{l} = 0 \quad .1 \quad .2 \quad .3 \quad .4 \quad .5$$

 $\alpha = 1; N_1 = .2344$.2160 .1654 .0960 .0304 .0000 $\alpha = .9; N_1 = .2110$.1944 .1489 .0864 .0274 .0000

The line of influence of the bending moment M at a point of the arch with the co-ordinates x and y has the equation

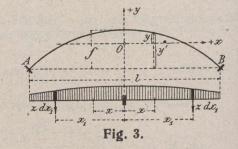
$$M = l \left(\frac{M_0}{l} - \frac{X_1}{l} - \frac{x_1}{l} X_b - \frac{y_1}{f} H_1\right) = l M_1;$$

Mo being the corresponding ordinate of the line of influence of the bending moment in the statically determinate auxiliary system. M_1 depends only on the ratios $\frac{x_1}{l}$ and $\frac{x_2}{l}$,

where x is the abscissa of the line of influence. In the table on page 657 is given the values of M_1 for varying

 $\frac{1}{l}$ and $\frac{1}{l}$ and for $\alpha = 1$ and .9 respectively.

By the aid of these lines of influence the maximum and minimum bending moments are finally determined



and also the simultaneously acting normal forces effected by a uniformly distributed live load p per unit length:

Maximum and Minimum Bending Moments.

		Max. M.	N.	Min. M.	N.
X1 .			$\begin{array}{c} \alpha = \mathbf{I} \\ pl^2 \end{array}$		pls
$\frac{\lambda_1}{l} =$	5	+.0173 pl ²	.0853 - f	—.0173 pl ²	.0397 f
	4 3 2 1	+.0042 " +.0073 " +.0093 " +.0071 " +.0054 "	.0591 " .0317 " .0497 " .0661 " .0631 "	0042 " 0073 " 0093 " 0071 " 0054 "	.0659 (.0933 (.0753 (.0589 (.0619
			$\alpha = .9$.0454 f
$\frac{x_1}{l} =$	5	+.0118 pl²	.0671 — f	—.0203 pl ²	.0454 f
	3 2 1	+.0026 " +.0072 " +.0103 " +.0089 " +.0075 "	.0355 " .0283 " .0476 " .0661 " .0686 "	0065 " 0076 " 0080 " 0053 " 0034 "	.0770 .4 .0842 .4 .0649 .4 .0464 .4 .0439

A uniformly distributed total load g per unit lengingives

$$X_{a} = -\frac{gl^{2}}{24}, X_{b} = 0, X_{0} = \frac{gl^{2}}{8f}a,$$

and the bending moment at the various points of the arch is

$$Mx_{1} = \frac{1}{24} gl^{2} (1 - 12 \frac{x_{1}}{l^{2}}) (1 - \alpha).$$

For $\alpha = 1$, there are no bending moments and consequently the maximum and minimum moments produced by a uniformly distributed live load have the same numerical values.

An increase of the temperature of t° gives

$$X_{\rm at} = 0, X_{\rm bt} = 0, X_{\rm ct} = \frac{45}{4} E J^{\alpha} \frac{\epsilon f}{f^2}$$