

A Class in Eox Packing at the Oka Agricultural Institute, La Trappe, Que.
This institute is a leader in horticultural education in the province of quebec. The Threctro Diagonal pack is here belng used Rer. Father leopold is the second figure on the left. He has recently been elected president of the Province of Quebe: Frult Growers Socioty.
etful of "food" no increase. The manure is of value not because of any "food" it contains. He misunderstands my argument.

When Mr. Emslic becomes personal and refers to "his own prescriptions," he is even here also in error. I am not a physician. I am simply a specialist in piant diseases and in soil fertility. His reference to soil constituents as "hash" is no argument. It is disposing of the
question as an orchardist does who, when he wishes to rid his orchard of insect pests, goes into the orchard and says "shoo." To compare fertilizers to a "dose of salts" is far too flattering to the fertilizers.

In conclusion let me th. nk the editor for this space, and say that the plant must answer. The plant is the chemist who must pronounce upon the value of a fertilizer.

Fertilizer for the Orchard

DR. J. P. Stewart, Experimental Pomologist of the Pennsylvania Fxperiment Station at State College, Pa , discussed the use of fertilizatinn and rultural methods in apple produrtion it the rerent monerntion in Toronto of the Ontario Fruit Growers' Assoniation. His dedurtions were based on cix years' work in ten experiments lorated in the leading apple sections of Penncylvania and involving ten different soil types and two thousand two hundred and nincteen trees. The trees range from ten to forty years of age, and have produred over one millinn seven hundred thousand pounds of fruit since the work started.

These experiments have shoun- First. that in anme archarde the rield ran be creatly in lymened hy proper fertilization, the minst impertant ciements of which -hove hemn nitrogen and phocphates Whith all nther ennditinnc innifnem, the gains from such fertilization have run as high as seventeen times the amounts of fruit produced on the adjarent checks or untreated plots and net profits have been as great as four hundred and twenty dollars an acre in a single scason. Under
these conditions, tillage and cover crops have not been the equivalent of fertilization. The gains from the former have averaged about one hundred bushels per arre annually, while the latter, without rultivation, was giving four hundred and fifty-two bushels a year.
Second: The absence of nitrogen, as a rule, applications of phosphates and potash have not been profitable. On some soils, and in the presence of sufficient nitrogen, however, moderate amounts of ticse minerals are often profitable. Veither has had any material influence on color. On size, the influence of potash has been favorable.

Third: Nitrogen has had greater influence in increasing yield than any other rement. It also has materially decreased color. This is due primarily to delav in maturity, and may be overcome by later picking, which is advantageous in Penncylu, nia with such varicties as Baldwin. The delay on it in one locality in inry was three weeks.

Fourth: Contrary to a prevalent notion, growth and fruiting are not antagonistic, unless cither occurs in abnormal amount. The best growing plots,
as a rule, have been the best fruitin? plois.

Fifth: Manure has usually proved pro fitable, doubtless ess ntially because o: its nitrogen content. In most of itr cases where it has proved benellicts, however, its net profits have bern ap. proached or surpassed by certani com: binations of artificial fertilizers.
Sixth: In a few orchards no form of fertilization has yet produced a materia response. This is considered to be die to the presence of other limiters, of which improper moisture supply in frequently important. The existence of stech orchards, emphasizes the need of local tests before making large and in gyular expenditures for fertilizers. Sump.e methods of making these tests and grood general formula for preliminary ue were indicated.
Seventh: In the long run, any orrhard that is actively producing and growing is likely to require fertilization, since the total plant food draft of such an urchard is quite heavy-more per acre for ever constituent except phosphorus than is required by a twenty-five bushel crop of wheat.

OONTROLLING THE COLOR
Eighth: Color in apples is essential! dependent on maturity and sunlight. Cos : ditions increasing one or both of these factors such as late picking, light soils. open pruning, and sod culture increase color. Opposite conditions decrease it. Iron applications to the soil have no been shown to improve the color.

Ninth: The average size of apples is governed primarily by the number d ? fruits on the tree, after thee number has passed a certain "critical point." This point is relatively high, the data showng that, even on trees up to fifteen years o! age, little or no correslation appeared until the number of fruits reached oxe thousand four hundred or more per tree. Below the critical point, size can be markedly affected by moisture suppri, cultural inethods, manures, and fenir zers-especially those rich in potash, and these factors may also cooperate in suts a way as to materially raise the critical point.

Ordinary concentrated lime-sulphe has not given as good results in destror. ing the oyster shell bark louse as the cif home-boiled mixture containing more lime made by boiling twenty pounds d lime and fifteen pounds of sulphura forty gallons of water. The poor recits obtained are due to the lack of free line The lime acts in the gelutineous matte of the scale, loosening it, and allomist the raustic lime-sulphur to enter and ${ }^{2}$ the insect. For best results in destroning this insect mix from five to eight poind of lime with each barrel of line-sulphr as diluted for application.- W. T. Mr. coun, Horticulturist, C.E.F., Oitama.

