or four feet deeper, uitil water rises into the bottom of the dranl, -where dese succeed many holes should be bored.

B
Another plan I have adopted is sinking holes in the bollom of the drains, (the drain being as nartow as a man can work in, fill these up to the surface of the bottom of the diain with small stones. Both these plans are a gleat saving of lakor, for when you cut throngh tive porons bedwhere the springs ale alway- found, these holes will draw the water from a great distance. This mode of draining will give a depth of fiom six to enght feet below the surface of the pain and thus the water will flow away rather than rise from the lowen spings or apentures of the stratum through die incumbent son to the surface of the plain which i, so many feet higher, to secure this is the greal secret of drainug these gromods, when the spiniss zannot be cut mo simply by a common dran. I have known water in such situations to follow the augur to the surface and rua in a stream ever after, and when dammed supplied power for atl reshing machine. Still I am a ware that this one drain, deep although it be, is not of itself sufficient to dry a field properly if the field or plain has a great declivity. There may be other stuations at a lowet depih which run out on the surface at a lower level, pernaps hall way down the field, or pernaps more, it so these oczings must be interiupted the same as before shown, but it is likely the drain will not be required to be more than hali as deep as the former. As to the filling materials, nothing can be more obvious than that the preference should be given to the mont sub tantial and lasting. I have used a variety of materials-such as stone-built rubble, gravel, tiles, whins, thorn brush, 太e., and many other materials which would take too much space to particularize in this paper. Such drainage as I have been describing should be filled with stone or tiles, I may mention that I do not think stone is so safe a material 10 fill with in this country as they are in Britain, owing to the frost penetrating so much deeper here, opening the soil over a drain so much more, thereby increasing the danger of the water washing the soil into the drain from the sufface and closing it up, espectally if the drain has not a great descent whth a large conduit. I have observed many instances of such cases with stone drains in Britain, and timber-filled drains in Canada. However, where stomes are convenient they will answer the purpose, and they may with care be used in deep drainage with advantage. In this case it would only remain to decide whether the handling of stones would not cost more than pires. In constructing such drains the conduit should be from four to six inches square, but of course depending on the quantity of water to be conveyed. In constructing these drains the stones shouid be placed in a row on eech side of the drain at the botom and a flat stone laid across the side ones, then fill up about a foot and a half with small stones and the remaiuder with earth. If the stones be flat and slaty they may be laid in the shape of the letter A or the letter V, that is to set two flat stories apart at the bnitom and join them at the top filled up on both sides, or the reverse,
open at the top and joined at the bottom and placing a stone on the top in such a way as to dhop in a lithe between the sule stones, Hend fill for a foot and a hall whe small stones and the remainder filled as before. It will be seen that the 1 o former methods requile the dhain to be wider at the bothom than the last mentioned. In a soft quicksand bottom, soles must be u-ed, but in solid tilly subsoll they may be dispensed with. Deep drainage, which is pumeipally to \mathfrak{c} arr wif spring water, I do not think lequires to be filled to such a great depth with porous materion; I would recommend sud, or straw, or shavingz, to be placed immediately on the stones followed by the snbsoil dug fiom the drain, and made sold. and the remamder filled wath what remains of common earth, because the water should be drawn into the drainfrom the sides near the boitom of the dram, and not from the top. But ules with small stunes, gravel, or uther porous materials over them is supentr to any thuy else, even in deep drainage.

So fal these remalks allude to the necessity of drainage and proper management of land where the water arises from s, rings, but there is a large potion ofoour sols in Cauada where, from tho retentive clayey nature of the subsoil, the sirface water does not pass away treely, therefore the subsoil is cold and chilly, and every knd of crop sown upon it grows stinted and slowly, therefore the season is far advanced betore they cover the gronud, in fact the best growing part of the season is lost. At thes advanced period our hot sun and scorching winds commence with severity, carrying off mosture so mapidly bf evaponation that the suil bakes, and the plant is held as it were in a vice, hen, of course, solls in such a state cannot absorb mosture from alore or below. To remedy these evils reconrse mas: be had to thorongh datumg, that is cutting drans, parallel with the declivity of the land at narna intervals apart, the distances depending on the tenacity or porosity of the subsoil, the distince? may vary from thuty to suxty feet, bat so long z: the water does not readily leave the sool, or ar! umecessary moinure is retained, we mayk assured that the full benefit of draining has mix been attained.

Mr. Stephens says the depth of furrow drair should be from 21103 feet. I do not think ti: the frost would ninure tules or pipes at 212 fec but when stone is used 3 feet would be requre, the subsoil on heavy lands is generally tree fiv: stones, theretore I thank the cost of cutting mis. be greatly lessened by the use of the plorge suppose a broad-culing prough would cut els inches deep by twelve broad followed by a ni rower one lifting six by nine, thus making fo: teen inches, then a subsoil plough susceede loosening sux inches more, to be lifted out with scoop-slovel made for the purpose, a repentinog the subsoll plough would loosen five or sis undes more, this in a $2!$ foot drain would only lean four mehes to be dug with the spade, why would be neesssary to level the suiface oft bottom fo the ules or filling material. Our subsaf are not quite so tenacious generally as those; Britain, our climate being much drier indt

