$\beta_{L}=\sin ^{-1}\left[\cos i_{t} / \cos L_{L}\right]$
An additional component is produced by the earth's rotation which is approximately $465 \cos \mathrm{~L}_{\mathrm{L}}$ mpg.

$\mathrm{V}_{\mathrm{BO}}{ }^{2}$ relative $=\mathrm{V}_{\mathrm{BO}}{ }^{2}+\left(\Omega_{\mathrm{e}} \mathrm{Cos} \mathrm{L}_{\mathrm{L}}\right)^{2}$
$-2 V_{B O} \Omega_{\mathrm{e}} \mathrm{R} \cos \mathrm{L}_{\mathrm{L}} \cos \left(90-\mathrm{B}_{\mathrm{L}}\right)$
$\cos \left(90^{\circ}-\beta_{L}\right)=\sin \beta_{L}=\frac{\cos i_{t}}{\cos L_{L}}$
$\mathrm{V}_{\mathrm{BO}}{ }^{2}$ rel $=\mathrm{V}_{\mathrm{BO}}{ }^{2}\left(\Omega_{\mathrm{e}} \mathrm{R}_{\mathrm{e}} \operatorname{cosL}_{\mathrm{L}}\right)^{2}$

- $2 \mathrm{~V}_{\mathrm{BO}} \Omega_{\mathrm{e}} \mathrm{R} \cos \mathrm{i}$
$\frac{\mathrm{V}_{\mathrm{BO}}}{\sin \left(90^{\circ}+\beta^{1}\right)}=\frac{\mathrm{V}_{\mathrm{BO}} \mathrm{rel}}{\sin \left(90^{\circ}-\beta_{\mathrm{L}}\right)}$
$\frac{\mathrm{V}_{\mathrm{BO}}}{\cos \beta^{1}}=\frac{\mathrm{V}_{\text {BOre }}}{\cos \beta_{L}}$
$\cos B^{1}=\frac{V_{\mathrm{BO}}}{\mathrm{V}_{\mathrm{BO}} \text { rel }} \quad \cos \mathrm{B}_{\mathrm{L}}$
$B^{1}=$ azimuth in which the vehicle must be fired.
Assumption: distance and time spent -during ascent to the point of burnout are small.

