NOTES ON BELTING

ALARGiF: proporton of the socalled acodent, to belts, til whth they fump from one cone to anothet, or run into nebibloring gears, are due to evcessine plabilty: Owimg to their greater lateral stiffess, thack belis are much to be preferred to thin ones so much do I believe that the property of stiffess increases the life of helts that I make it a rule to use an thick a belt in all cases as the dameter of the pulleys will permit A manifest adantage of belts made of tino or more thinknesses of leather hes in the fact that imperfection of the leather will produce but hitle effect in a double or triple belt, while in a smgle it is fatal. Messrs. l.ewis Bancrof have, in their evperments, demonstrated the fact that " no marked difference could be detected in the power required to run a wide double belt or a narron light one for the same tenum as modetn speeds. And akan, we see ropes up to two inches in diameter trans miturg power with great effic iency, and with apparently but litile loss of power mans, their thickness. Therefore a thick belt will be proutically no less etiicient than a thin one on acrount of its suifness.
Many evperments bave shown that the pulling poner of belting for a gilen arc of contact is almost mdependent of the area of the belt in contact with the belt, and that It depends rhiety upon the sectional area of the belt, and its total tension, so that a triple belt will transmit about as much power as a songle belt three times its width.
Winh ude belts, and belts running at high speed, it is espectally desirable that the thirkness hould be increased. If than belts are used at high speed, they alinost imarably run in wates on the stack side, particularly if the load ahich thes are transmitung changes suddenly. These wases freguently continue t:: the belt while it is rounding the druen pulles. so that one can sometmes even see light in places between the belt and pulley rum when standing in the proper position. This "rinkling of belt, and the snapping that occure an the "wes straghten out, wears it very fast, and causes the -plices to part. frequently in a few months. The remedy for this trouble 1 hate manably found to be an increase in the tho kiness of the belt. When a sumicient thichness is used, the bett settles down on the ame pulle!s and wider the same conditom, : a a lons, steady rurse on the lack ode and the wrinkling and onapping cease.
It would seem alon a though a certan ratio of that nes, to the widh of belt should be mantaned, particu luty in hislopeed belt, otherwise the belt is apt 0 - lase from sde to sude on the pulles. Thur chasing would seem to be due theng to the willam of the belt around tis bomatudnat ants on the lack ode, the belt bemg theteby bighened, tios th ore edge and then at we other, eat h ade ats it is tighened tending to run tonad the cente of the pulle: This ascillatum, and the resultant hatime are almost ane to cate when the tha kness of the belt wincersied in preper priportion to its width A. in illatration of tha promple, the Wher hat in innd the case of th bett $-x$ mes wide and of the he thati, rummes about $: 500$ feet fer minute, "hin would newe be presenteu from chant from sule to side on it palle for an length of tome withont the ace of an atles palley Jhas basm; was due to the
 on the wall in. inew of the beit in telation to it "th l leet , whe the k and $: 2$ mo he wale. we 아 the s.me pulles, wis .atmont entuely free from the

 atff \cdot. perminentis iemone the trouble it would be wown that the thin he: bett prowed to be far more eronos.

 on acome of the"t heren tufnew and comequent durabhite. it le - ome of the utmont mportan e to deter.
 used with a sene thanese of belt. and sall hae the bedt low well the whet in quate ate that the domble teather helts : 1 m h thinh will lint weli and fine ervel.

 mode thene condiang for some the pas he has

pressing lughtly upon it, and transmitung about toohorse power to a pulley 12 inches in diameter. This belt has up to date given excellent satisfaction, and has already lasted much longer than the two double leather belts whith preceded it.
Regarding the question of fastening the two ends of the bel' together, I think it is safe to say that the life of belting will be doubled by sploung and cementing the belt, nstead of lacing, wiring, or using hooks of any kind. When belts are subjected to the most serere usage, the spliced portion should be riveted, iron buris bemg preferable to copper. For double belting, the rule works well of making the splice for all belts up to to inches wide, io inches long; from 10 inches to 18 inches wide the splice should be the saine width as the belt, 18 inches being the greatest length of splice required for double belting.

Cheap power for manufacturers.

I a suggestue article on "The Economics of Electric Pouer, which appears in Cassier's Magazine for March, Mr H. L. Lufkin, a prominent electrical engıneer, drawsatery striking picture of what has more recentl; been accomplished in the way of applying electric motors to the driving of machinery of all kinds. so much has been sadd and writen in a general way of the con enience and economy of applying electricity to the duang of shop tools that specific facts and figures, derned from actual experience, are most welcome addı. tions to the hiterature of the subject, and every power user must, therefore, needs appreciate the valuable reference data given in the artule. One of the adrantanges of using electric motors is found in the fact that ther may be connected to the machinery to be operated almost directly, without the interiention of long lines of shafung, whose frictuon losses alone ofien represent an apprectable tem of expense Referring to this feature, Mr. Lufkin sais

The apparent losses in shafung had always been agnely estimated until the adient of the electric motor, by which. with the and of an ampere indicator, these losses are readily and accurately determined. As a result of a test in some thirty shop: of varied descriptions, made in is 0, , t was discovered that 68 per cent. of the average power applied in these shops was consumed in the shafting. Some data recently very kindly furnished to the uruer by one of the large electric companies, which. by the way is furnishing current for operating about four or file thousand horse-power in electric mutors, coier seient-one s'ops. The totals of these hops showed that $121.52+$ ualls represented the average total energy supplied, and that $\$ 4.700$ watts were conammed in the shafung, etc., being $(x) 2 \cdot$; per cent, of the a era;e power, thus appronmately checking the tests of siso These friction losses in shafting in the mills and fatories before referred to bate been partially eliminatad by means of grouping tools in sets and otheruise, drisen by electric motos, so that enture sets might be completely shat down when not actually in ase without interfermg. with the remander of the shops, and lon: l:nes of transmatung shafung and belung, between floors or from bulding to building have thus been dispensed with.
In interesting evauple of the conomy derived from this proupnge of tools is found in a factory now bein_{h} equipped with an elortrical transimission system. A preliminary cuperment in this fartory showed that the saing in fuel alone will certanly eveed ;o per cent and prowhldy (x) per cent. In one recent instance a card, mdurating fifty nine horse power, "is taken from an engine druma a large machne shop. a biak simh shop wh premati, ham:mer, bowers, ew., a pattern shop, and numernus yectal tools or :hice floor, of a buidinge about sevent fise feet squar This card was taken "ith all tonk idle, tho , how ing firtononly The same toklv were rearranged and arouped into micral sets. duaen by electri motors. and under the condtion. the werage induator ard from the engone draing the dyanos which furmsh the pmue. for these same tools wabout twent-five horse-powel, coverng friction, poner for the tonis .ancia all.
The consenience and fiesiblity of an electrical power tansmionun sutrm are frequently commented on by
present users, from the fact that single tools or sinall groups of tools may be efficiently operated in isolated locations, or locations at considerable distances from the main power plant. The great saving derived in an electrical system nwing to the intermittent use of tools, was long since taken advantage of by the builders of traveling cranes, and to-day probably ninety nine out of every hundred traveling cranes installed are operated entirely by electric power, an independent motor being used for each of the several functions of the crane. Many foundries now work their nib cranes with directly geared motors, taking current, in many instances, from the same dynamo which lights the shops.

how many plour mills p

H^{+}OW many flour mills are there in the country? is a question quite frequenily asked. The Minneapolis Record has been gathering some figures on this point. It places the number in Canada at about 1,000 . There are probably all told about 1200 mills in this country. In the States the number is placed at beyond $i 5,000$. Pennsylvania leads all other states in the number of inills, there being 2,200: New York follows next with above 1,300; Ohio 975 ; Missouri 810; Indiana 750 ; Illinois 700 ; Michigan (600; Wisconsin 575 : Iowa 500; Tennessee 490 : Virginia, $\ddagger 60$; Texas 450; North Carolina 405; Minnesota 390; (ieorgia 340; West Virgina 335 ; Kansas, 320 ; running down from that to 3 for the District of Columbia. While Minnesota is fourteenth in the list, according to number, the capacity is beyond the capacity of any other State, owing to the larger size of the mills. The daily milling capacity of Minneapolis is above 47,000 barrels, if run up to the highest possible lunit This, however is ir. pracucable, and during the last year the average production in this city was 67.8 per cent. of the total capacity. The average production of 1 ,ulutin and Superior was 56.3 per cent. of the total capacity. The alerage production of St. Lours was $\$ 8.8$ per cent.: of l3uffalo 55.9 ; Milwaukee (ow.). The ave age darly capacity of i)uluth and superior during 1893 was rated at 12.301 barrels. The year began with less than that, but several mills were completed in West Supenor during the season, and at the begrning of this year Superior had a capactity of 12,000 barrels dally and Duluth 6,300 barrels daily; St. L.ouis a danly capacity of 21,000 barrels; lluffalo 1 1,000; M,1 -aukee 10,200. Baltumore has some 3,300 barrels total capacity: l'hiladelphia about half as much; Detroit about 2.000 ; Chicago some 4,000 ; Kanses City above 2,000 ; Cincinnati about 2,000; Cleveland 4.000, and Indidnapolis about 5,000 barrels. Minneapolis in 1892 manufactured $9,750,470$ barrels of four. In 1893 $9.377,63$; barrels. The product of Minneapolis exceeded in both these years. all the flour producing cities separately. The production of this city was greater than that of St. Louis, Baltinore, Philadelpha, Buffalo, Milwaukee, Toledn, Detroit, Chicagn, Duluth and Superwor. Kansas City, Cincinnati, Cleveland and Indian ipolis combined, and they are the leading flour cities outside of Minneapolis. The production of flour, to capactit: in Minneapolis, in 1892, was 71.6 per cent. of Capacity: St. Lous $\mathbf{5 1 . 1}$; Buffalo 64: 1 uluth and superior, together, 5t, and Milwaukee 71.3 per cent.

not always the case.

P RIODICAl.I.) there foats through the technicap press, says l'ower, an item to the effect that onesuteenth of an inch of srale has heen determined by accurate experment to require 15 per cent. nonre fuel ; three-sinteentbs, 3 per cent. While this may be strictly true for the bonler expermmented upon, 11 can not, in the nature of things. be of uninersal application nor an inder of the loss which may be expected upon another looler from a given thickness of scale. A boiler with a meager amount of heating surface would suffer sermously from an impair nent of the efficiency of that surface by scale, while a boiler with ample surface would suffer conparatucly hitle. The rem cudently started froin a cormula based by Nystrom upon the allesed f.ect that saturatod scale has about one-thirtieth the condut twiy of iron plate, and giving the dimimshing values guoted as the amounts of heat transmitted through a guen amount of heatung suifare.

