floats paralled to their face, or at any angle reverse to the motion of the wheel, is lost.

This rebounding action iecomes less as the columns of water projected upon tho wheel are increased in numbe" and diminished in sizo.
To mect the conditions of rotation in the wheel, and to facilitate the escape of the water witbout dragging, after it has expended its force upon the vanes, the reversed curves of the 117thine arrangement become necersary. Keeping these general principles in view, the apprentice will beable to understand in geueral the construction of impact wheels.

The modern turbine has been the subject of the most careful investigation by able engineers, and there is no lack of mathematical data to be referred to and studied after the general principles are understood. It is a subject of great complicity, if fulluwed to detail, atd, perhaps, less useful to a mechanical enpin-ct, who dues not intend to contine his practice to water whet la, than other subjects that may be studjed with moread. vantage. The subject of water wheels may be called an exbausted one, that can promise but little return for labour npent - fin it with a view to improvements; the efforts of the ablest hydraulic engencers have not added much to the percentage of useful effect realised by turbine wheels during fifteen years [ast, and their present performance is quite equal to anything that can be hoped for in future.

This matter is alluded to for the reason that in choosing ang particular branch for a special study, an apprentice should select such as are least perfect, and present the best chance for improvement, instead of such things as there is every reason to buticve have reached a reasonable state of perfection, and are in finture to remain substantially the same. The last statement of course applies only to a few branches in the engutering arts, and perbaps more fulls to water wheels than to any other
licaction acels are used only to a limited extent, and will soon, no doubt, become extinct as a class of water wheels. In spahing of the'm, I will select what is known as Barker's mill fur an example, because of the familiarity with which it is knuwn, although its construction is greatly at variance with modern reaction wheels. A query as to the principle of acthon in a Barker wheel, while it may be very clear in a scientific sennc, still remains a puzzle to the minds of many who are well ursed in mechanice, some contending that the porer is directly from pressure, others that it is from the dynamical effect due to rear tion. It is one of the problems so difficult to determine bs ordmary standards, that it serves for endless debate between thuse who hold to different views; and, considering the advantage that is derived from such controversies, perhaps, the most useful manner of disposing of the problem here is to slate the two sides as clearly as possible, and leave the reader to determine for himself which ho thinks right and which wrong.

Presuming the vertical shaft and the horizontal arms of a larher wheel to be filled with water under a head of 16 ft ., there would be a pressure of about 7 lb . upon each inch of surfare withn the cross arm exerting an equal force in every directhun By opening an orifice at the sides of these arms equal to 1 in of area, the pressure woula at that point be relieved by the escape of the water, and the internal pressure be unbalanced to that catent. In other words, opposite this orifice, and on the other s'des of the arm, there would be a force of 7 lb . that was not balanced, and would act as a propelling force in turning the wheel.
This is one theory of the principle upon which the Barker whet acts, that has been laid down in " Podges' Mensuration," and perhaps elsewhere, as an explanation. The opposing theoIf is that, dircct action and reaction being equal, ponderable matter discharged tangentally from the periphery of a wheel must creato a reactive force cqual to the direct force with which the weight is thrown off To state it more plainly, the spouting water that issues from the arm. of a Burker wheel mast react in the opposite courso in proportion to its weight.

The two propositions may be consistent with each other and even identical, but there still remains an apparent difference. Th latter seems a plausible (heory, and perhaps a correct one; but there are two facts in connection with the operation of reaction water wheols that seem to controvert the latter and favour the first theory, namely, that reaction wheels seldom uthlse more than 40 per cert. of useful effect from the water, aud that their speed may excecd the initial velocity of the water.

With this the subject is left as one for argument and investigation on the part of thore who choose to consider it.

Press're wheols, liku gravily wheels, would, upon theoretical inference, be expected to givea high per cent. of power, tho water resting with the whole of its weight again-t the vancs or abutments, and without chanco of escape excep; by turning the Wheel, would seem tomeet the true conditions of realising the whole force; and so it would, if such wheels had not to con. tend with cortain mechanical difficulties that render them im practicable in most cases.

A pressure whecl, like a steam engino, must include running contact between water-tight surfaces, and, like a rotary steam engine. runuin: contact between water-tight joints that move at degrees of speed that vary in the same joint, and when it is considered that the most careful workmanship nas never produced rotary engines that would surmount these difficulties in working atcam, it can hardly be oxpected thoy may be overcomo in using water, that is liable to be filled with grit and sedsment, and lacks the peculiar lubricating property of steam.
A rotary steam engine is in offect the same as a pressure water wheel, and the approntico in studying the first will fully understand the principles of botu by supposing steam to be substituted by water.
(To be continued.)

CIDER AND CIDER-VINEGAR.

To procure either cider or cider vinezar of the best quality, care and skill are requiredin the manufacture. Some too economical persons, thinking, that nothing should be wasted, are now engaged in gathering all tho wormy and defective apples that fall from the trees, and consigning them to the cider-press. As new cider this questionable liquid is sold to the unsuspecting consumer for fifty cents a gallon. It however bears no comparison with , ider that is carafully made from sound apples, and can not be made to produce a well-havoured vinegar It would be better economy to feed all such apples to the pigs, for the first requisite for good cider or vinegar is sound fruit. All bruised, wormy, or defective apples must be discarded, if perf ction is desired in the product. The next consideration is the mill and press, and the method of asing tieem. In districts where timber is plentiful, and the necessary mechanical skill can be had, an improvement upon the old-fashioned mill and press is probably the best machine that can be procured. It is mado wholly of wood, and no iron comes into contact with the crushed fruit. The timber should be sugar-maple or birch. These are free from the tannic acid, which renders oak objectionable, and stand wear and tear sufficiently well. The crushers are made of solid blocks, carefally seasoned under cover, so that they are free from cracks. They should be abont 18 inches in diameter, and about two feet long. They should be turned perfectly cylindrical in a lathe, and deep, broad grooves cut lengthwise in them, so that the teeth of each, which aro left projecting, fit accurately into the grooves of the opposite one. Four inches wide and three deep is a proper size for the grooves. This work should be done by a miliwright, or a carpenter used to doing mill-work, as it is a somewhat difficult job. Upon the perfection of the rollers or crushers, the yjeld of cider greatly depends, as tho apples mutt be reduced to a pulp, before all the juice can be pressed from them. The rollers are furnished with axles, also accurately turaed, and are fitted into a frame, which is shown in fig. 1. This frame consits of a strong bottom of plank, four inches thick, preferably of maple, closely jointed and matched together. This is raised about 22 inches from the ground, upon a stout frame, and is pinned fast to heavy posts, set a few inches in the ground, so as to be immoveable. A raised border is placed around .se bottom planks. A cross-frame is built across the centre of the bottom, into which the axles of the rollers are fitted, and to which they are secured by short blocks, pinned or bolted to the frame-work. The lower arles of the rollers fit into holes made in the bottom planks. The axle of one roller is lengtheced, and attached to a horizontal arm, to which the horse may be hitched. A hopper is built at the rear of the crushers, to receive the apples, and feed them to the crushers. Fig. I sufficiently explains all other details. The press is shown in fig. 2. It is an improvemont apon the old fashioned heavy press, which is made from the trink of a large treo, and frequently requires the trank of another large tree as a support for it,

