Draw two other bases B_1C_1 , B_2C_2 of lengths 30 and 45 millimetres. At B_1 and B_2 make angles $C_1B_1A_1$, $C_2B_2A_2$, each equal to CBA; and at C_1 and C_2 make angles $B_1C_1A_1$, $B_2C_2A_2$, each equal to BCA. It follows (Ch. III., 4) that the angles at A, A_1 , A_2 are equal to one another. Hence the three triangles are equiangular and similar.

Now measure the lengths of the sides of the triangles $A_1B_1C_1$ and $A_2B_2C_2$. If the constructions have been accurately made, we shall have the following numerical values:

BC = 15	$B_1C_1 = 30$	$B_2C_2=45$
AB=20	$\mathbf{A}_1\mathbf{B}_1 = 40$	$\mathbf{A}_2\mathbf{B}_2 = 60$
AC = 25	$A_1C_1 = 50$	$A_2C_2 = 75$

Then calling those sides corresponding sides which are opposite to equal angles, we observe that corresponding sides about equal angles are proportional, i.e.,

3. Again, construct a triangle ABC, whose base BC is 24, and sides AB and AC, 30 and 40 millimetres. Draw two other bases B₁C₁ and B₂C₂ of lengths 36 and 60 millimetres. At B₁ and B₂ make angles C₁B₁A₁, C₂B₂A₂, each equal to CBA; and at C₁ and C₂ make angles B₁C₁A₁, B₂C₂A₂, each equal to BCA. It follows (Ch. III., 4) that the angles at A, A₁, A₂ are equal to one another. Hence the three triangles are equiangular and similar.