(2)
$$\sqrt{x^2+3x-10}+x+5 = \sqrt{x+5}$$

 $\sqrt{(x+5)(x-2)}+x+5 = \sqrt{x+5}$
divide thro' by $\sqrt{x+5} \cdot x = -5$
 $\therefore \sqrt{x-2}+\sqrt{x+5} = 1$
whence $x = 11$

which satisfies the equation when the negative root of $x^2+3x-10$ is taken.

(3)
$$xz+yz = xy$$

 $x^{2}(5z+y) = 5yz$
 $10z-6x^{2} = 10x^{2}z$
 $\vdots -\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$ (a)
 $\frac{5}{y} + \frac{1}{z} = \frac{5}{x^{2}}$ (b)
 $\frac{10}{z} = \frac{6}{z}$

multiply (a) by 5 and subtract from (b)

$$\therefore \frac{6}{z} = \frac{5}{x} + \frac{5}{x^2}$$

$$\text{but } \frac{6}{z} = \frac{10}{x^2} - \text{Io from (c)}$$

$$\therefore \frac{5}{x} = \frac{5}{x} + 10$$

$$x = \frac{1}{0r - 1}.$$

$$x = \frac{1}{2} \text{ or } - 1.$$
If $x = \frac{1}{2} \cdot y = \frac{1}{3}$ and $z = \frac{1}{3}$, &c.

7-
$$x^{1}-10x^{2}+1=0$$

 $\therefore x^{2}=5\pm\sqrt{24}=5\pm2\sqrt{6}$
 $\therefore x=\sqrt{5\pm2\sqrt{6}}=\sqrt{3}\pm\sqrt{2}$
 $\therefore =\sqrt{3}\mp\sqrt{2}$
 $=1.7320\mp14142$
 $=.317 \text{ or 2. 146.}$

8. Let dbe the com. dif. and p the number of terms.

$$\frac{m}{1} + md = (m+1)\text{th term} = 1$$

$$\frac{n-m}{n}$$

$$d = \frac{m}{n}$$

and
$$\frac{m}{n} + (p-1)d = \text{last term} = \frac{n}{m}$$

 $\frac{n}{n} + \frac{n}{n} + \frac{n}{n} + \frac{n}{n} + \frac{n}{n}$

and sum of series =
$$\binom{m}{n} + \frac{n}{m} \times \frac{1}{2}p$$

$$= \frac{m^2 + n^2}{mn} \cdot \frac{m^2 + n^2 + 1}{2}$$

$$= \frac{m^2 + n^2}{mn} \cdot \frac{m^2 + n^2 + 1}{2}$$
9. Series = $\sqrt{3} \left(1 + \frac{1}{\sqrt{2}} + \frac{1}{2} + &c.\right)$

$$\therefore s = \sqrt{3} \left(2 + \sqrt{2}\right) \left(1 - 2^{-n}\right)$$
and sum to infinity = $\sqrt{3} \left(2 + \sqrt{2}\right)$

UNIVERSITY OF TORONTO.—SEN-IOR MATRICULATION, SEPTEMBER, 1880.

ARITHMETIC AND ALGEBRA.

- I. Prove the following :-
- (a) When the three right-hand digits of a number are divisible by 8, the whole number is divisible by 8.
- (b) When, in a number, the sum of the digits standing in the even places is equal to the sum of those standing in the odd places, the number is divisible by II.
- 2. Change 592835 from the decimal to the duodenary scale, she wing clearly the reasons for each step.
- 3. Prove the rule for reducing a mixed circulating decimal to a vulgar fraction.

Add together:

7.427, 9.1234, 17.2987643, 18.67, and give your answer in a decimal form-

- 4. Extract the square root of 79,792,266, 297,612.001; and the cube root of 62,712, 728, 317.
- 5. State the ordinary "Index Laws," and deduce the value of ac.
- 6. Divide, according to Horner's Method, $x^{3} + x^{8} + x^{7} + 2x^{6} x^{4} x^{2} 2x 1$ by $x^{4} + x^{3} + x + 1$.
- 7. When f(x) is divided by x a, shew that remainder is f(a).

Ex. a^3 $(b-c) + b^3(c-a) + c^3(a-b)$ is exactly divisible by a + b + c.