TABLE IV.

Temp.	Concentration.	Spec. Conductivity
25°C	Water	2.745 x 10 ⁻⁶
"	$4.94 \times 10^{-7} \text{n AgNO}_3$	2.812×10^{-6}
11	${ m AgNO_3~sol.~along~with}$ $4.4~{ m x~10^{-8}n~HC1}$	2.745 x 10 ⁻⁶
4.6	8.8 x 10 ⁻⁸ "	2.571×10^{-6}
**	13.3 x 10 ⁻⁸ "	2.612×10^{-6}
4.6	35.5 x 10 8 "	2.704×10^{-6}
**	66.6 x 10 ⁻⁸ "	2.745×10^{-6}
4.4	133.3 x 10 ⁻⁸ "	2.842×10^{-6}
44	122.2 x 10 ⁻⁸ "	3.115×10^{-6}

From these values it will be seen that on adding successive drops of a $\frac{N}{10000}$ solution of HC1 to a 4.9 x 10^{-7} normal solution of AgNO $_3$, the conductivity at first rapidly decreased and after reaching a minimum, steadily increased with the amount of HC1 added.

This experiment was repeated, using solutions of AgNO₃, gradually increasing in concentration each time.

The results are given in tables V, VI, VII, VIII, IX, X.

TABLE V.

Temp.	Concentration.	Spec. Conductivity
25°C	Water	2.596 x 10 ⁻⁶
4.4	$9.8 \times 10^{-7} \mathrm{n} \ \mathrm{AgNO_3}$	2.700 x 10 ⁻⁶
"	$ m AgNO_3$ sol. along with $4.4 \times 10^{-8} n~HC1$	2.613 x 10 ⁻⁶
44	8.8 x 10 ⁻⁸ "	2.764 x 10 ⁻⁶
66	17.7 x 10 ⁻⁸ "	2.822 x 10 ⁻⁶
• •	39.9 x 10 ⁻⁸ "	3.022 x 10 ⁻⁶
44	84.4 x 10 ⁻⁸ "	3.139 × 10 ⁻⁶
	173.3 x 10 S	3.375 x 10 ⁻⁶

ıl

y