yards, thence to the extent of the district the gullies can be open to admit air to fill the partial vacuum formed by exhaustion. This plan if carried generally into use would have the effect of producing a downdraught through the street gratings and thus, during the day time, prevent the gases from rising into the streets.

We consider, however, that great precautions would have to be taken, when the furnaces were in use, to shut off the foul air, or to ensure its being carried up the chimney shaft.
An excellent plan for ventilating drains, and very similar to the one proposed by Dr. Goilfrey, has heen brought forward by Alderman McLaren, an illustration of which will appear in the Cunadiun Illustratrol Ners of the 19th inst., but as the subject is to be discussed soon by the City Council, we shall postpone our remarks on this plan for a future number

In a future number we shall furnish illustrations on the most approved methods of ventilation and drainage
of cities.

SOCIETY OF ENGINEERS.

November, 1st, 1875.
Mk. W. H. Adams, President, in the Chair.

$$
\text { (See page } 80, \text {) }
$$

Mr. Griftiths has latterly alvanced certain views respecting the
molle of fitting serew of the of fitting serew wropellers. He advocates, first, the inclosing
of tule tike case or slicld, to which the water coming to the screw cau only obtase or shield, to which the water coning to the screw can only obtain access from below; the diagram
No. 1 shows the arrancement. The schenenhows it the arrangement. The author will not enlarge on the
Gritfols Griffths claims as whe regards the provoked much controversy. Mr. water is slaimere equally regards the the inclosure of the serew, that the
and is led from it in such an and is ledf from equaly tin ted to the serew, more closely confined to it,
mise the encingel a direction as is best calculated to oconomise the engine lin ser a a direction as is hest calculated to econo-
claims that the inwer and give the hest working results. He also claims that thle inclosing and give the hest working results. He also
from danger of fracture of the sereer protects it from fouling and from danger of fracture. Mr. Griffiths likewise advocates the dupli-
cation of serews, not cation of shews, not on the ordinary twin principle, but in the
manner shlown in diagram No. 2 ,
head head and another at the stern of the vercew heing placed in the In a paper which Mr Grifn of the vessel.
Naval Architects he Mr. Grififths read beforore the Institution of
thee that the necessity of having hated that his attention was first drawn to
attending the stern screws from the danger attending the use of the long and stern screws from the danger being increased by making the teamers now employed, thatt danger single set of mach making the safety of the ship dependent on a
difiery, an armen difficulty of machinery, in arrangement also that increases the ings and forgings neceessary to to dery, owing to the immense castdemanded to secure high spyeed develope the great engine poower over that while the secres speed. The opyonents of the shield-tube should it become foulerew has less chance of becoming fouled, clear than an uncovered would be infinitely more difficult to
to tunnel as a water feedered serew. As regards the use of the of the Dwart, whicher to the screw, Mr. Grifiths cites the case was subsequentity reeduced to speed at first of about 9 knots, run of the vessel. this reato tabout $3 \ddagger$ by planking up the after stance the vessel ; this result he attributes solely to the circum-
ther the serew. In a seco
experiments with wer, Mr. Griffiths stated that, in the course of power ands with a model, he found that when he divided the
screve screw, each pocrew being oulf to the stern and another to the bow model was increw being enclosed within a tunnel, the speed of the when the power was nearly as the square root of the power, but then the increase was doubled alone on the how or stern screw, The way Mrerease of spreed was onlly an the cube root of the epower.
ply reaches ply reaches the Griffiths accounts for this is that a better water sup-
Having serew. Having said so muce
in existing said so much of a particular and important innovation
ceed to say ancice in screw propulsion, the author will now proceed to soy a little about the propulsion, the author will now pro-
by the best by the best firms in the the nature of that prectice, as carried out
somewhat singul somewhat singular diversity of practice amongst engineers, the the
various screws vary various screws varying greaty of from eactice amongst ent, engineens, in the shape
and proportion of their bhades and the number of blades form-
ing each.

Diagrams No. 3 illustrates a three-bladed screw, fitted to H . M. S. Lapwing by Messrs. Henme. The diameter of this screw is 8 ft . 6 in., the pitch varying from 9 ft. 6 in. to 13 ft .6 in. This screw is a fair example of a Griftiths three-haded propeller, and was designed to comply with those conditions discovered by Mr. Grifitiths as regulating the most efficient action of his propeller. It has a boss, which tapers outwards, and the blades are slightly curved forward, the pitch of the serew is uniform. The nominal horse-power of the Lapwing's engines was 80 , the indicated power 502 , or 6.25 times the nominal ; the diameter of the propeller was 34 times of the boss.
Diagram No. 4 illustrates a douhle two-lladed Mangin serew, fitted to H. M. S. Bullinch. It is 7 ft . 3 in. in diameter, pitch uniform, nominal horse-power of engines, 80 ; indicated horsepower, $458 \cdot 5$; or about $5 \frac{3}{4}$ the nominal. This form of screw is frequently made with a varying pitch, and is also made as shown in diagram No. 5, which is a more modern form than that of the screw of the Bullfinch. In February, 1868, H. M.S. Blan he was officially tried, being fitted with a Mangin screw; diameter, 14 ft . 7 in ; $;$ iiteh of the leading portion of the blade, 15 ft .7 in ., and of the trailing portion 17 ft ; the mean length of blade on keel line being 12 ft . The speed of the ship was $13 \cdot 631$ kuots an herur the escrew making $88 \frac{2}{2}$ revolutions with full hoiler 1 ower ; half boiler power gave $11 \cdot 78$ knots. The official report stated that the use of full power created a heavy thumping acting upon tho ship's stern, the same action being very marked during comparative trials with the Shannon about ten years ago,
Diagram No. 6, illustrates a common two bladed servew by Messrs. James Watt and Co., 16 ft . in diameter, and 20 ft . pitch; length of blade on keel line, 3 ft . 4 in.; indicated horse-prower of engines 458. A propeller of this kind, proviled with lifting gear, was fitted to H.M. troopship Simoon.
Diagram No. 7 illustrates a two-bladed Girifiths propeller fitted to H.M.S. Collingwood by Messrs. Rennie. The author is not in possession of any particulars of its performance.
Diagram No. 8 represents a six bladed sere whaving a linury ter of 15 ft .9 in. , and a pitch varying from 17 ft .6 in . to 21 ft . $6 \mathrm{in} .$, , fitted to the Egyptian Goverument steamer (harkieh, and the theory of its action was, that by sub-dividing the surface of the blades into many parts, a greater uniformity of action results; but comparative experiments with this and a thre-llhaded screw demonstrates that little advantage rested with either. The firstnamed screw was used from Malta to Alexandria ; the latter serew was used from Venice to Alexandria, and the hourly consumption of coal was 34 cwt . 0 gr . 9 lb .; mean speect, 10.69 knots .
Trials of the Charkieh with a six bladed propeller and a threebladed propeller:-

Kind of screw.	Cousumption of coal per hour.	Mean speed.
6 bladed	. 33 cwt .3 qr .15 lb .	10.65 knots.
3 bladed	34 cwt. 0 qr. 9 lb .	10.69 knots.

The six-bladed propeller, however, caused the least vilration.
The following table shows the comparative phaticulars of this vessel with a six-bladed propeller and those of the steamship Ruahine :-

Charkich and Ruahine.

Diagram 10 illustrates the propeller of the latter vessel. Diagram No. 9 represents the two-fladed Griffits serew fitted ly Messrs. Maudslay to H.M.S. Lord Warlen and Lard Clyde, which are sister ships. The diameter of the screws is 23 ft .; mean piteh, 23 ft . 6 in , varying from 21 ft . to 26 ft . ; the indicated horsepower of the engines is 6705 ; mumber of serew revolutions, 63.3 ; speed of ship, $13 \cdot 49$; displacement, 9000 tons.

