These towers were of immense size. In the works of Vitravius, one of the great architects of Rome, we find that they were never less than 90 feet high and 25 feet scuire. One was constructed one hundred and attached to the side next the enemy was a dealy let fall, to the top of the rampart, and the besiegers passed over it to the assault.

it was always thought that if one of these towers could be brought thus, safely, up to the ditches' edge, the fortress was sure to be eaptured. The Greeks called it the "taker of cities."

The besieged party defended themselves vigorously. They replied to the fire of the besiegers by the discharge of similar missiles-they poured boiling water, seething pitch, scalding oil, and hot sand, on their heads; they hurled down great stones, and beams of timber, and one of their most horrid devices was to wind a quantity of tow soaked in pitch round an iron hoop, set it on fire, and drop it from the wallthe fiery circle often enclosed two or three men in its deadly embrace, when they perished miserably. This mode of annoyance was used by the Kuights of St. John against the Turks at the siege of Malta in 1556.

Against the mines of the besiegers they made counter-mines, the hostile miners meeting in the subterraneau galleries, in the most savage conflicts; they sometimes undermined the great mound itself, and penetrated beneath the great tower, which, when the props were fired, fell in with a horrid crash. If a breach was made in their wall, they raised a new wall behind it. In fact, considering the difference of the engines employed, the defence was conducted much on the same principle with that on which towns are defended at the present day. -

We come now to the engines themselves, the Artillery of the olden time.

The most terrible and prominent of all these was the Aries or Ram. This was, simply speaking, a large and long beam of timber, like the mist of a ship; the end was armed with a huge head of iron, fashioned like that of a ram. whouse its name. To give a familiar illustration, which au Ottawa man will readily understand; if you suppose one of our largest red pine spars, 100 feet long, and two feet in diameter, headed at its thickest extremity with a solid mass of wrought iron, for the ancients knew not east from-and fancy this huge piece of timber slung by several strong chains to a large beam that lay across a frame work of upright posts, and then further faucy this piece of timber with its iron head, furnished with ropes, at stated distances, drawn back, and then forcibly driven against the wall by the united force of two or three hundred men, continually relieval, you can begin to appreciate the power of the ratti.

The ram, therefore, though not properly speaking a projectile weapon like the cannon ball, answered the same purpose.

Anciently it was a beam of much smaller sies, carried in men's bands. But as walls be-

handspikes placed in noise in the large and I gan to be more strongly constructed the run jen tower, the run head projecting towards the was made of far larger size, and suspended side of the enemy from a narrow opening, by mechanical contrivances. Instances are mentioned in which it was mounted on wheels, and so driven against the wall.

It is said that the first use of the ram, in its eighty teet high, and of thirty-four stories. In simplest form, that is, borne in men's arms, was the lower part of this tower was placed the by the Carth ignians at the siege of Cadiz in battering ram, to be described presently, and | Spain; and that the mode of suspending it by ropes or claims was invented soon after by a draw-bridge, proportioned to the breadth of Tyrim mechanic, Pephasmenos. Wheels were the city ditch, and so constructed that when added by a Macedonian engineer, Polydas, at the tower reached the edge, the bridge was sud- the siege of Byzantium, in the time of the great Philip, and a Chalcedonian engineer first formed the idea of planing it under a proof covering to defend the men who worked it.

Some of these rums according to Vitravius were a hundred and twenty feet long.

I wish you now to understand how the ram produced its effect upon a high and thick wall. so as to throw it down. The effect of the ram was due to vibration, or in other words, shaking. The continued strokes of the heavy weight made the wall tremble -this trembling of the whole structure, gradually loosened the conregiment of soldiers across a suspension bridge, ploy powder in the very heart of the great city. in the usual calenced march, the bridge com- 1 come now to the machines for casting pro-France a few years ugo, by which a whole bat- just as we know, that even insoldiers in passing over bridges are always or- period. dered to break their sten.

A curious calculation was made by Dr. Desscience, that the power of a ram, 180 feet long, with a head of one ton and a half, the whole of a 32 nound cannon ball, fired at point blank is apparent that the learned Doctor has forgotten one very important thing, that is the size of the head of the ram; the cannon shot penetrates the wall, and so by repeated battering beats the stones to pieces, as will be explained in a future lecture, when we shall see how modern artillery makes a breach. The ram does not penetrate, it shakes; its head having a larger size its power in the blow is spread over a larger surface. Thus while its penetrating power is diminished its shattering power would be increased. Most of you have seen a leaden bullet discharged from a common gun cut a clean round hole through a pane of glass, but all of you know that a stone the size of the fist would shatter it into feagments. This is the best example I can give you of the difference between the effect of the ram and the cannon

In the earlier periods the ram was advanced to the assault, under the protection of a shed, called a 'vinen,' formed of hurdles, covered with earth, or raw hides. In latter times it was worked from the lawest story of the great wood- the size of these engines, according

merely wide enough to admit the passage of its head, while the rear of the tower was open for the convenience of the men who manned it.

We have no precise record of the time which was occupied in making a breach by the use of the ram. That must have depended on the height and thickness of the wall. It is quite evident that the higher the wall the more easily was it shaken.

The great object of the besieged was to prevent its approach. Hence the first effort was to destroy the shed, or tower which protected it us I explained before. If the ram .commenced its work upon the wall, great stones were dropped upon its head, in the hope to break it off. Nooses of rope or chain were let down to entangle it-bags of wool, wicker hurdles, or masses of any yielding material were lowered from the wall by ropes to interpose between the ram and the masoury, thereby to deaden the violence of the shock.

I believe that the last well known and anthenticated instauce of the use of the ram, was nection, or adhesion between the stones and, in London, in the reign of Chatles the Second, the cement, until the alteration in structure when the great architect, Sir Christopher Wren, was so great that the wall maily tottered and employed it to shake down the walls of old St. fell. The action of the ram depended on pre- Pauls' Cathedral, burnt in the great fire of Loncisely the same principle by which the strength don, previous to the erection of the present of a suspension bridge is tried. If you march a structure, as it was thought dangerous to em-

mences to rise and full, responsively to their jectiles. These were of various kinds and measured steps, and this motion continues to in- known by many names. Many of these engines crease in violence, until the bridge gives way, were of Greek origin, and their use continued crease in violence, must the pringe gives way, more to and after the invention of powder, A shocking accident of this kind took place in down to, and after the invention of powder, talion in heavy marching order, was precipitate waged by the Parliament of England against ed into a deep and rapid river, and an immense Charles the first, the bow and arrow had not number of lives lost. It is for this reason that been entirely superseded by the musket of the

These machines are correctly described by several ancient writers, and drawings of them aguliers, an eminent professor of mathemetical may be continually found. The two principal ones were the Balista and the Catapulta. The Balista threw stones, the Catapulta large arweighing 41,112 nounds and driven by the rows tipped with iron. Down to the time of united force of 1990 men is only equal to that the invention of powder these identical engines were used under other names; in the Chronirange, or 330 yards. But in this calculation it cles of Froissart, Monstrelet and De Comines we find them mentioned as Mangonels, Trebuchets, and War-wolfs. There are many other names of engines, both among the Romans and Greeks, and in more modern times, but they seem to have been applied to smaller engines. I shall not trouble myself with them, as the principle on which they were constructed was invariably the same.

The best description to give of them is that they were gigantic cross-bows, and that al most powerful of them did not consist of a single bow or spring, but of two, the end of each elastic arm being inserted in the centre of a coil of rone strongly twisted, so that when the two ends of the arms were brought together a most violent recoil was produced, when the trigger was pulled. Some of these engines were so contrived that they threw a whole shower of beavy darts, in what we should call a volley, or baskets of great stones. Their use was to clear the wail of the enemy who defended it.

We find in Vitravius all the calculations for