A LADY.

1 know a lady on this lnnd

Who carries a Chincse fan in her hand, But inher heart docs she earry a thought Of her Chinese sister, who carefully wrought Tho dainty, delicato, silken toy For her to admiro and to enjoy:
This Indy has on ner parlop floor Alovely rug from Syriun shore; Its figures were woven with curious a I wish that my lady had in her heart One thought of luve for those foreign homes Whero the light of the Gospel never come Is a Japaneso screen ol curious craft, She takes the comfort its presence gives, But in her heart not ono thought lives, Not even one littie thought-ah me :For the comfortless homes that lic over the sea. My lady in gown of silk is arrayed; The fabric soft was in Indit made, Will sho think of the country whence it came? Vill she mako an offering in His name To send the perfect hearenly dress, The mantle of Christ's own rightcousness, To those who are poor and sad and forlorn, To those who know not that Christ is born? - Womans Work for Woman.

CHAMPION ATHLETES

If our readers were asked to name the animal which can carry on its back the heaviest burdens they would, perhaps, all choose the elephant. But if asked to name the living creature which is strongest in proportion to its own size and weigh there would be a difference of opinion.
Many would still mention the elephant, some the grizzly bear, others the horse or the ox ; ifew, perhaps, the tiger or lion. Florida boys and girls might name the land tortoise or "gopher," so common in that state, because they have seen one of these walk off with a man standing on its back.

Fossibly a few young naturalists would think of the Samsons of -the insect vorld, the powerful beetles and ants which they lave seen carrying loads of cnormous dimensions in proportion to their own size and weight. A dwarf may be proportionally stronger than a giant, because it has less of its own weight to carry.
.. A man weighing ono hundred and fifty pounds can carry three hundred pounds on pounds can carry three hundred pounds on
his shoulders, whilo a horse weighing twelve his shoulders, whilo a horse weighing twelve
hundred pounds can birely stagger under hundred pounds can buroly stagge
a burden equal to his own weight.
a burden equal to his own weight.
Similarly a horse is proportionately Similarly a horse is proportionately
stouter thin an clophant. An nnimal much larger than the olephant could hardly drag its own weight along, much less force its why through the tingled forests and jungles of India and Central Africa. A bird much larger than the condor would be too heavy to soar in flight. The whale could not sustain its own enormous weight except for the buoyant support of salt water.
To take opposite extremes, let us compure the ant with tho clephant. A wall ten feet high will stop the progress of the elephant, but the ant can arag aldend fy
three times his own size and weight over an obstacle which, in proportion to the an obstacle which, in proportion to the aut's size, is greater than a four-story
is compred with the elephant's size.
is compared with the elephant's size. and agility in insects has led me recently to and agility in insects has led me recently to
make experiments which, even in viev of make experiments which, even in view of
the facts just referred to, will bo found sinrthe facts just referred to, will be found sine-
prising and interesting, Having noticed plising and interesting, Faving noticed beetles burrowing in the earth and moving heavy clods, I determined to make an exact measurement of the strength of these herculean fellows.
I prepared little sacks of the lightest muslin, and put into them exact weights of
fine shot. Some of these sacks held o fine shot. Some of these sacks held Ω quarter of an ounce, some half in ounce, four ounces each. I filled the sacks loosely, so that they would lie firmly on the back of an insect without falling off. The weigh-
ing was done with a chemist's bilanco which turned with the tenth part of a which
grain.
My first trinl was with the great black water-beetle; known as D!tisisus, often found in pools, troughs and mill-dams. I put a four-ounce bag of shot on his bnck, and he walked off with ease. I continued to add weights until he flatly refused to caryy more, and I found at list that he could walk slowly under a lond of twelve ounces. I then weighed the beetle hinself and found that he turned the beam a. seventeen grains.
This proves that our water-beetle can carry on his back three hundred and nine times his own weight.
Now let us compare this performance with that of other members of the animal with that of other members of the anima
kingdom. If is boy weighing ninety pounds kingdom. If a boy weighing ninety pounds
possessedthe water-beetle's ratio of strength possessedthe water-beetle s ratio of strength
to weight, ho could wilk with a weight of thirteen and ic half tons on his shoulders ! If a mule weighing eight hundred pounds could carry three hundred times his own weight, his load would amount to a hundred and twenty tons. But in fact the mule could barely stagger. under a burden of eight hundred pounds. Hence our waterbug, in proportion to its weight, is three hundred times as strong as an average mule. I next experimented on the large yellow beetle known as the "gold-bug." My specimen weighed eight and a half grains, and was fully able to sustian a load of ten times his own weight.
The brown "i pinch
The buown "pinching-bug," as he is called, almost ran away with the ten ounces of slitt piled on his buck, though he is lighter than the gold-bug, and finally carried moro than six hundred times his own weight.
At this rate an ox weighing one thousand pounds would bear it burden of three humdred tons, equal to the weight of water contained in a swinming-tank eighty feet long, twenty-four feet wide and five feet deep.
No:

No: yet convinced that I had found the stoutest insect, I went on testing the powers of various species. But I soon satisfied myself that nothing was to be gained by leaving the beetles, as they far, surpassed ants, horn
strength.
strength
At las
At last I observed a medium-sized beetle which seemed to burrow in the earth with wonderful strength. After finding hi weight to be four and two-tenths grains, I piled my little bags of shot on his sturdy back until the limit of his power to mo e them was reached. His load was then a trifle over eight and a quarter ounces-

Ariel Spider (side view).

Aricl Spider
(nalural size).
exnetly eight hundrod and fifty-eight times his own weight.
At this rate an elephant weighing three tons could carry a load of more than twentyfive hundred tons-the weight of a ball of solid gold more than twenty foet in diameter, and worth more than twelve hundred million dollars !

So far as my experiments have gone, this brown beetle is entitled to rank as the chmmpion lifter of the world, until another can be found to surpass him. He is known to maturalists ns the Euphoricuinda, but I prefor to call him the Samson beetle.
I next turned my attention to the question, Whero may we find tho world's swiftest runner? Is it the greyhound, the Western jack-rabbit; or the coyote? No; all these aro left behind by the Arabiin steed and the English or Kentucky racehorse, with his record of a mile ina minute and a half. But even he is a slow creeper in comparison with the racers of the insect world.
To test this matter it was necessary
to mensure carefully the length of each con-
testant, and then to time his speed over a convenient level súiface. Of course my: racers all rin against time, for I could not train them to start side by side at the word "Go." Much time and patience were required, becruse each insect had to be tried several times in order to insure correct.results.
After many and carcful experiments I came to the conclusion that the champion runner is Ω spider. Spiders, though closely related to the true insects, are not properly classed with them. Irue insects have eight legs instead of six, and spiders differ in other respects from the construction which naturalists hold to be strictly characteristic of insects.

There is a dark gray, brown-striped spidor of small size, common everywhere in the lone grass, weeds and moss in woods and fields from early spring to late fall. Spiders of this species build no webs, but spiders of this species but in search of their prey through the miniature tangled forests of stems and the miniature tangled forests of stems and
stalks, ruming with wonderful swiftness stalks, rumning with wonderful swiftness
and easily overtaking the insects on which and easily overtaking the insects on which
they feed. They' are the tigers of the insect world
I captured, with some difficulty, several specimens of their kind, and tried their speed on smooth rocks, logs and fence-rails, with remarkable results. I selected one that measured three-sixteenths of an inch long, and timed his run across my oilclothcovered desk twenty-three inches wide. He ran this distance in one and a quarte seconds.
He was made to repent this again and again. These tests showed that he ran nearly a hiundred times his own length in a second.
Imagino for a moment that a race-horse seven feet long could move with proportional speed. At that rite he would run seven hundred fect in a second, or nearly eight miles in a minute. The fistest horse can run eight and a half times his own length in a second. Therefore our little spider runs more than eleven times faster than the horse.
Suppose, again, that a railway engine measuring forty feet in length could run in hundred times that space in a second. Its rate would then be over forty-five miles per minute, or twenty-seven hundred miles per hour!
If our spider could be enlarged to the size of such an engine, and could run in like proportion to his present speed, he would get over the rond one hundred miles while the engine was running three miles. He could travel from New York to San Francisco in less than three hours.
There may be faster racers than this brown spider, but we may call him champion until another is found more worthy. Let us give him a name suited to his magical speed, and call him the Ariel spider, after a runner that Shakespeare has made famous.

Next I am going to prove that the champion long-distance leapers and standing high jumpers are found in the ranks of our six and cight-legged performers.
six and eight-legged performers.
Most of my readers have seen the feats of grasshoppers and crickets. Some have also noticed in grass and on bushes the small, sharp-headed green and brown
hoppers very abundant in late summer. hoppers very abundant in late
These are all high and far leapers.

When they reach the final stage of their growth chey, like the true grasshoppers, get wings which help them through the air. It would be unfiii to allow those to compete whose wings had appeared; so I mado my experiments with specimens that were still in the larva stage. After trying the leaping powers of many grasshoppers, I found one just three-quarters of an inch long that made a leap of forty inches. A katydid without wings did a little better.
If a toad three inches long could do as woll in proportion, he could hop a distance of thirteen feet. The kangaroo is the leader in this line rmong quadrupeds ; but fancy our amazement to see a kangaroo
three feet long leap a hundred and fiftythree feet
six feet

Among the littlo green-hoppers referred to above I found one, about one-eighth of an inch long, which leaped ono hundyed and forty-eight times his length.. I started him from a leaf, and he sprang to a grassstalk eighteen and a half inches distant. If the flea were a long-distance leaner,
to leave the grasshoppers and even the
 tal distance of more than a hundred times their length ; but their jump is always much higher than it is bromd. They
 often spring upviow, a . Spring-piece. in ward to a gient
placo for jumping. b. Suc. h eig In t, and
fion tubo for udhorence to
 come down almostat the spot from which thoy started.

I found it impossible to measure acof the flca's jump, but it far exceeds three hundred times the length of the insect. If a boy four feet tall, who could jump like a flea, were
Podurn, or Spring-tail standing at the foot Tower and wanted to trade knives with a boy on the top, he would not need to ride up on the clevator.
duil. Spring opice A man of six feet with tail. Spring-picec proportional pow ers after jumping. could in nine leaps reach the summit of our highest Alleghany mountains, supposing the inclination to mensure three miles from base to peak. Returning, he could make the distance in three outward and downward leaps.
Perhaps the most interesting thought in
this connection relates to the safety of alighting after such a descent. Some of my young friends have rend about Darius Green and his flying machine :
"Wal, I like flyin' well enough,"
He said; "but thicy ain't such a'ma
Of fun in it when yo come to light!
A man leaping downward a distance of hree thousand feet would gain the speed of a cannon ball and be dashed to pieces. The flen, falling not more than eight feet, comes down as lightly as a snow fiake.
Thus natural laws protect the humblest forms of life, and render easy the remarkable feats which we continually observe.
Granting, then, that the flea is the champion high jumper, let us look again for a long-distance leaper that can surpass the green-hoppers.
I hippened to recall to mindra curious family of insects-the Poduride, or spring-tails-possessed of a sort of seventh leg or spring-piece, which is so placed under the body as to give the creature a powerful aid. in leaning. I tried various members of this family, and at last found a tiny fellow hardly one-fiftieth of an inch long, which made a clear leap of five hundred and twenty times his length.
Of course he had a great advantage in the possession of his spring-piece in performing this amazing feat.
But if the toad and the kangaroo could do as well as the spring-tail in proportion to his size, the toad could hop a distanco: of a hundred and thirtiy feet, and the kangareo more than a quarter of a mile

A NEEDED REFORM.

Several of the large railway systems of the country have inaugurated a temperance reform, insisting that all train employees shall be abstainers from drink, and a number of men have been discharged recently on their refusal to be total abstainers. Tho nuthorities argue that even if a man is sober during his hours of duty, if he overdrinlis one day, he cannot as safely perform his duty the next, in a position where human life depends upon a clear head and a stendy hand.
Discipline in the army lins been defined as "that which makes it more dangervus for the soldier to go back than to go on."

