Arifitial Stone.

The Suffoll Chronicle contains a potice of the manufacture of artificial stone in large masses, upon a plan lately discovered by Mr. Frederick Ransome, of Ipswich. The composition of the stone is not given, but it appears that the principal bitding material is the indestructible silicate of lime. Blocks weighing a ton and a-half may, it is stated, be completely solidified and hardened in the brief space of two hours, wherens by Mr. Rnnsome's original process, only small blocks could be made, after a long period for drying and bardening in the kiln. The Chronicle quotes a report by Dr. E. Frankland, F. R. S., of St. Bartholomew's Liospital, who says the "patent conerete will be found equal to the best of Portland, Whitby Hare Hill, and Park Spring stones in its power of resisting atmospheric degradation, and if the newness of Ransom's stone (the specimen experimented upon nut having been made a furtnight) be taken into cousideration, together with the wellknown fact that its binding material, silicate of lime, becomes harder and more crystalline by age, I am induced to beliere that Mr. Ransome has invented a material which, with the exception of the primary rocks, is better capable of giviog permanedcy to external architectural decorations than any stone hitherto used." We are informed, moreover, that such is the confidence entertained io the imperishable properties of this material, it has been selected by Mr. Fuwler, the enginecr, for the facing of the Stations of the Metropolian Railway now in progress. We may also state that ite capabilities of resisting strain and sustaining pressure have been found to be nearly three times that of Portland stone; thus, it nany be finilly assumed that these qualities, combined with facility of production and the inexpensive nature of the materials used, must ensure for it general adoption in the construction, as well as in the embellishment, of buildings generally, and in works of art. Mr. Ransome has made enlargements and introduced fresh machinery at his works to carry on an extensive manufacture, but it should be observed that the process is so simple that che stone can be manufictured on the spot where the demand arises.

Thanliunt.

Mr. Crookes, whose discovery eighteen months ago of this new element by the spectroscope we have already anoounced, has sinee prepared numerous compounds of $i t$, some samples of which are to be scen in the Chemical department of the International Exhibition. We were slown some time since a specimen in its pure metalic state, obtained by Mr. Croukes, but as no detailed statement of its characters, nor of the nature and actions of its salts, bave been as yet published, alchough a slaort abstract has been displayed with the specimens since the opening of the Exhibition, it may be interesting to our readers to know what this new element-the only one discovered by an English chemist since Sir IIumphrey Davy's detection of the metallic bases of the alkalies-is like. It is a dense heavy, rather lustreless metal, very like lead, to which netal it is also very similar in its physical properties, but is a trific beavier, and taraishes perhaps a little quicker. Its colour, however, is not identical. In chemical properties it is similar
to mercury, lead, and bismuth. Mr. Crookes is continuing his researches, and we are glad to state that the Royal Society has voted him a grant of $50 l$. towards the expenses of these costly:/investiga-tions.-London Reviev.

The Aclantic Telcgraph.
The paddle-wheel steam surveying vessel Porcupine, 3, Master Commander IIoskyn, at Devonport, appointed on the application of the directors of the Atlantic Telegraph Company to take soundings in the Atiantic, will be provided with a donkey-engine on deck to assist the men. The machioes which will be used are those called the "Bull-dog" machines. They are constructed on the principle best adapted for bringing up portions of the bottom. Brooke's apparatus will also be employed. The Porcupine, it is expected, will, in the first place proceed to that part of the Atlantic where there is what is popularly called a cliff in the bed of the Oceav, at which point it is supposed the former cable was broken. At the head of this declivity, about 200 miles from Ireland, there is a depth of 550 fathoms, and at the foot 1,750 fathoms, showing a difference of 1,200 fathoms. But this decline extends over a distance of eight miles, so that the fall is only one in eight. Other portions will, no doubt, be sounded. It is stated that in the event of a second attempt to establish telegraphic communication across the Atlantic, some place on the coast of Ireland, further north than Valentia harbour, will be selected for the purpose of obtaining a more convenient bed for the reception of the wire.

Effect of Small Elevaitions on the Mean Temperature of the Air.
M. Becquerel shows that there exists a vast difference between the temperature of the atmusphere close to the ground, and that measured at an altitude of 60 to 70 feet above it. The soil, its nature, colour, and the oljects which cover it, all influence the temperature within the above limits. It had long been observed that vegetation varies according to height, and that certain plants which cannot be culcivated in the valleys, will thrive very well on the tops of the adjoining hills. Often, also frost will injure the flower of the vine, and respect that of the almond tree close by, which grows at a higher altitude. The director of the Botanical Gardens at Montpelier, has observed that laurel, fig, and olise trees die awny in the lower parts of his garden, but are spared a few metres higher up, though in buth cases protected by the same contrivances. M. Berquerel states that the mean temperature of the air at the "Jardin des Plants," during the year 1861, increased regularly from one metre to 33 metres above the soil, and this circumstance has prompted him to endeavour to fis the altitude of which the temperature represents the real average at a given spot. IIe bas remarked the curious fact that at 6 a.m., all the yenr round, the temperature is the same at any altitude not exceeding 21 metres; 6 o'clock a.m. is, therefore, a critical period of the day, the temperature of which must stand in a certain relation to that of the month or year, and this relation he expresses by certain co-efficiente, which vary according to the diferent seasons, and reach their maximum in summer, and

