A NEW CEMENT.

Cements in common use are few in number, and their properties are such as to make the builder often turn round and wish that something else were available when he has a special difficulty before hun, says the British Clay-Worker. In such cases his inventive faculty is called into play, and he dodges the difficulty by mechanical stays or supports, or eise lie puts in, with some musgiving, the best he can do with Portand or other cement.
In Germany the difficulty has of course been recognized and grappled with. With such scientific people as the Germans are, it is not to be expected that they would go on in the same old way without hunting about for a panacea wheh should fill the gap in the available remedies. A well-known expert in such matters claums, recently, to have solved the problem, and to have produced a cement intended to be used in a filsed state to fix iron stay-braces in stone and brick-work, or even cast iron, as well as for filling up and repairing fissures in walls, butresses and foundations. It is also useful for repairing faults in ironcastings, setting machnery and stufing collar joints of all kinds, and therefore should form : handy substance for keep. ing in the store-shed of every brick-yard where machunery is employed.
Anoongst the propertes of this new cement we notice that it fires at a low heat to a watery consistence, whereby it is enabled to penetrate into the narrowest ${ }^{\text {- }}$ cracks and the smallest holes. Hence, when it cools it expands, and so adheres firmly to stone, brick, metal, or wood. Morcover, it resists the action of acids, moisture and oils, the two latter virtues specially recommending it to clayworkers who wish to repair, quickly and efficiently, slight damage to machinery.

The cement has recently been subjected to some very trying tests in Germany, and an account of these was recently given in the Mittheilungen aus d. Konigh. techn. Veasuchsanstalt zu Berlin, vol. xiii., scries (6), pp. 290-302. To those of our sub. scribers who can read German, a perusal of this lengthy paper would doubtless be valuable. We can, however, only spare space fot the main results. We notice that the cement stood a pressure of 495 kilogrammes per sq. c.m. when in the form of cubes, and of 10.3 kilogrammes per sq. c.m. when in the condition of flat blocks $10 \times 80 \times$ So c.m. LN.B.-A kilogramme equals 2.205 lbs avoir., or about 215 lbs ; a millimetre $=03937 \mathrm{in}$., or about $1 / 25 \mathrm{mch}$; a square millmetre $=$ $\cdot 0015 \mathrm{sq}$. in., or rather over $1,500 \mathrm{sq}$. in.]
The cement is found to make a thorminhily scrurid biak in, for collar jnints. and atmophiter" a condurn hate tiele in
 product sumethinis at arwi in bethe. or
else to adopt this new German cement; it is to be hoped that the former event will result. \qquad
ESTIMATING RADIATION.
John H. Mills, in his book, "Heat for the Warming and Ventilation of Buildings," has given a definite formula for fikuring radiation, which is as follows
In estimating the size of a radiator for a room allow one syadre foot of radiating surface for each two feet of glass, one for each 20 square fect of wall exposed, and one for e.ich 300 cubic feet of spare to be warmed. The only extra figuring necessitated by the use of this rule is to estimate the amounts of window and wall exposure, which calculation, it would seem, would be well paid for by the extra element of certainty which such calculations would impart to the final estimate of radiation needed. With the more usual method of estimating merely on a ratio basis the results may have been certain enough, but with this rule, which requires but little more attention, a check is furnished for the ratio estumate, which would be well worth the trouble.
Perhaps the best way to work the rule, at least for those who are more accustomed to the ratio method, is to use the two together on suct, occasions as call for
a hetle extra consideration, first estimating on a ratin basis, and then by the $2 \cdot 20 \cdot 200$ rule. If the two results approximate it is fair to assume a considerable confidence in the correctness of both; it the results vary a little an avernge of the two may make a sate determination, while if they are considerable at variance it would look as if it were well to reconsider one or both of the estimates. The final results from the 220200 rule always represent stean surface or water if it is intended to run it at stean temperature. The common practice would, however, probably call for an mucrease of 25 to 30 per cent. in case the estumate was for a water radictor. This tule does not apply when the heating of any roons under consideration involves an! feature of ventilation, but it is intended: o cover only such cases as come under the ordinary requirements of direct heating from direct radiators.

ARIIFCMIL STOUE PATEHERTS

SIDEWALKS A SPECIALTY

CORPORATIOHS Will do weill io consider our work arid prices lefore letting onitracts

Ihe Silica Barutic Stone Gompanu of Ontario, Ltd.

walter milids, Gencrai Manager.

INGRRSOLL, ont.

FOR ARTIFICIAL STONE PAVEMENTS, ROOFIKC GRAVEL, CONCRETE, ETC.
USE GRUSHED QUARTZITE SILICA SAND \& GRAVEL CO.

MONTREAL
15 Mill Street
Teiephone 2444
. Write for prices delvered in your town. .
Drummond Mccall Pipe Foundry Company,
Canada Life Building - MONTREAL.
CAST IRON WATER ANO CAS PIPES
Works: Lachine, Que.
Prices on Application.

ATHE THREE RIVERS IRONWORKS CO. 厷.
 Montreal Offlec: IMPERIAL BULLDING.

Gast Iron Water and Gas Pipes
HYDRANIS, VALIES aul GENERAL CASTINGS.

Commussom allowed to persons introducing new business

