ugust, 1874

en sustained, especi-

and Delaware vinee vines to overbear; he case in the fruit-nd '71, when many to bear as much as to the acre. This so to induce disease of were unfitted to enaction of the wood in e buds in the majothe past season was th of the usual aver-, or one-third to a l localities.

- Much interest was nual meeting of our th the use of sulphur at the islands. e grape-growers from the vines had been tent for several years judiciously done, it eventative of mildew uit, and also of the iage; and where this 2, the vines ripened as to suffer but little er, and thus produced neyards not sulphured These facts will cause ulphur hereafter, and expected therefrom. mix sulphur with an e air-slacked lime, and h a bellows, of which ery cheap style for the application is made as re off in June, and re-or so during the sum-

pense are quite small enefits; and the praco grape-growers gene-arieties that are sub-lighting of the foliage. eriment a trial and re-ear.—M. B. BATEHAM,

RAL SOCIETY. ibition of the Toronto

, the quality of plants order of merit, and the must have been highly umittee. It is a great ad these flower shows what is more enjoyable od floral display. encouragement is given Howers. Small cottage fortnightly or monthly

rge cities, especially in hibitions are held, at of the crowded courts big city, exhibit plants oride in these small local s most pleasant to wit-reely a house, or rather ded courts of the poorer metropolis, but where en nearly all the year sion. Surely something way of holding small wns and villages in this by a taste for flowers to a greater extent than

TREE APHIS.

ase tell us though the w concerning the little which are found on the nerry leaf, causing it to the fruit on our trees. cinity have been very m for several years past, eighbors have found a not as yet discovered eason, but expect them

every day and wish to be prepared to receive them. An early answer will much oblige an old subscriber.

F. AINSWORTH. North Amherst, Mass., June 4, '74.

REMARKS.—The lice which injure your cherry trees can be killed by a strong wash of whale oil and soap suds, if you can get it on them, which is quite diffcult, as they are pretty well protected by the curl of the leaf. Another way would be to clip off the ends of the twigs with a long-handled pruning shears, and then crush the lice under foot. This might be more practical than the wash, as the lice commence operations on the ends of the twigs where the leaves are most tender. A few years ago, the cherry tree in this vicinity were nearly ruined by these black lice, but, for the past year or two, they have not been very numerous. Perhaps you may escape this year. Nearly all insects have their parasitic foes, and it is not improbable that these cherry lice have been reduced by some such enemy.

CLOVER AS A FERTILIZER.

Dr. Voelcker, the able chemist to the Royal Agricultural Society of England, by a series of the most exhaustive analysis of soils and of plants, has discovered and established the fact that an immense amount of nitrogenous food accumulates in the soil during the growth of clover, especially in the surface soil; amounting, including that in the clover roots and tops, to three and a half tons of nitrogen per acre; equal to four tons and a third of ammonia. These results, verified and proved, came almost like new revelation in farming. Dr. Voelcker says that the farmer who wishes to derive the full benefit from his clover hay, should plough it up for wheat, or timothy, as soon as possible in the autumn, and leave it in a rough state as long as is admissible, in order that the air may find free access into the land, and the organic remains left in so much abundance in a good crop of clover, be changed into plant food; more especially that the crude nitrogenious organic matter in the clover roots and decaying leaves may have time to become transformed into ammoniacal compounds, and these in the course of time into nitrates, the form in which nitrogen is assimilated by cereal crops.—Massachuse ts Ploughman.

PACKING PLANTS TO TRAVEL LONG DISTANCES.

In packing plants for transmission to distant places, Dr. Thuber says there is more danger from too much than from too little moisture. The best packing material is sphagnum or bog moss, and this should be just so damp only as to be elastic to the touch. Plants packed in this, if not too damp, will remain for weeks uninjured; that is, if the plants are at rest. Another thing is to pack close. If sending by post, take a piece of strong brown paper; lay the just wet-not damp-moss upon it; put the plants upon the moss, and more moss over Then begin at one end of the the plants. paper and roll up hard, secure with a string, and then put another paper over for directions. So, in packing in boxes, use the moss just damp, and have the box full and crammed down hard, so that there can be no pos sibility of moving or shaking in transit.

LUCERNE.

The editor of the American Farmer, Baltimore, thus briefly gives his experience of the value of Lucerne:

· We staked off a patch of this, less than one-sixth of an acre, and had it cut and fed to one horse and cow, the one cutting supplying the two head for fourteen days. The average heighth of the Lucerne was about thirty inches, and though we have had no rain since, the heighth, as we write (prior to the first of July), is about ten inches.— We cut our Lucerne last season, which was a dry one, three times-in this respect not coming near our correspondent, who cut his crop seven times in one year.

A HEAVY FLEECE.

The Colonial Farmer, Frederickton, N B., says:

"A farmer at Lower Gagetown, Queen's County, possesses a flock of sixteen grade Leicesters that averaged ten pound of wool per head. The sheep were highly fed for six weeks or so, before going out to grass, the food consisting of grain and potatoes.—
Mr. Fox, the owner of the flock, considers it judicious to change the food frequently. Not bad for New Brunswick.

ORIGINAL AND SELECTED-S.

Notes of the Garden and Farm.

CURRANT WORMS.

We see recommended the following recipe for this pest of the garden:

"Two teaspoonfuls of potass to two gal lons of rain water, sprinkled over the currant bushes twice a day for a few days, will effectually rid the bushes of the currant worms. For the potato bug the same remedy is effectual."

For years we have effectually waged war against the currant worm, and have always had a superabundant fruit supply even when there was none elsewhere in the neighborhood. My remedy was hellebore sprinkled on the bushes as soon as the worm made its appearance. It never failed of destroying them, and at no time was it of the slightest injury to bushes or fruit. To have the very large crops of currants thrive some little trouble is processory. In the fall I was a little trouble is processory. trouble is necessary. In the fall I prune every bush, dig a trench around it, which I fill with rich, strong earth or compost, and in spring mulch with wood ashes.

The Western Advocate regrets that the Agricultural "Associations almost alto gether ignore the cultivation of the soil in their competition for premiums." It is not so in the home country. We have taken part in awarding premiums for the best plowed fields, the best crops of roots, of cereals, and of flax, and know what a valuable stimulus to good farming was the award ing of such premiums. In a section of country by no means remarkable for its natural adaptation to successful agriculture. we have seen fields of turnips yielding from 40 to 45 imperial tons to the plantation acres; mangold wortzels a still heavier crop; oats from 17 to 20 barrels (the barrel of oats the same weight as a barrel of flour); potatoes nearly 23 tons, equal to 800 bushels.-This was model farming. Not a weed was to be seen; the stones were crowded out of sight in the best place-the drains; there were no waste corners. The reports of the farms lately obtaining the premiums were only on a larger scale, and in a better farming locality, but not otherwise better.

VITALITY OF THE SEEDS OF PLANTS.

"I never use in my garden such manure as that heap till after a year's preparation,' as that heap the actor a year's preparation, said E—, pointing to a pile of the droppings of cows that had been roaming and grazing at will over the commons. "For some time," he continued, "I used it without any preparation, but experience has taught me a lesson on the subject also. The seed of white clover eaten by the cattle on the common remains perfectly sound in their droppings, and when used on the land the following spring, it grows with such tenacity of life that I cannot keep my seed beds or flower knots clean.'

So great is the vitality of the seed of white clover (trifolium ripens) and of many other plants, that the saliva, the heat of the stomach, and the rumination of cud of chewing animals are powerless to affect it. When such is the vitality of seeds so small and apparently so easily injured, what must be the power of endurance of the acorn and chestnut and others protected by strong, hard shells.

The length of time that some seeds must have lain in the earth before they had the opportunity of germinating, sometimes lead to the inquiry: "Whence came those plants so alien to the place?" We can scarcely believe that for so many centuries as must have elapsed since plants of the same species could have grown there, the seeds could have been stored in the earth with all their vital powers unaffected by time or any of its

vicissitudes. The writer had at one time the opportunity of witnessing a rare and remarkable instance illustrating this wonderful endurance of vital power. On the south-west coast of Ireland there is a long, low range of mountains—low when compared to McGillicuddy's Reeks and other mountains in the There was no grass growing on vicinity. the mountains, no clover in the entire neighborhood. More than once has the writer reclined, not "beneath the shade of the leafy beech tree," but on the fragrant heath, while bees in thousands gathered their winter stores of honey from the many-colored

were the only occupants of the soil. Mr. M., desirous to improve a portion of this mountain, had it manured with sea sand and shells from the shore. Such was the effect of this manuring that the heath and thyme disappeared when it was applied, and a sward of white clover sprung up and flourished, the dormant seeds awakened into life by the lime of which the shells were composed. How long must those seeds have lain beneath the turf, bearing for untold centuries nothing but heather and thyme on that mountain side?

MANURING LIGHT AND HEAVY SOILS.

In light soils a good application of farmyard manure actually, in time, adds bulk to the soil and creates more land, owing to the large amount of humus and other organic matters not taken up by the plant. In stiff lands dung may be carted on the land and spread without any fear of a loss of manuring matter, even though it be plowed in for some time. Clay has very marked powers of absorption, and as the rain washes the soluble material into the soil, it is held there by the clay, ready for use when required by the next crop. This property of clay ought to be borne in mind, as it will enable you to clear your farm yards, provided you are going to dung some clay land.—Prof. Catcheside, at Tunbridge Wells, E.

THE GRAPE VINE WITHOUT ARTIFICIAL SUPPORT.

In the garden of the Rev. Mr. Hablen, of Penetanguishene, a Clinton vine was allowed to run wild over the ground. The effect was very remarkable. The vine not only bore profusely and ripened its fruit as early as the others of the same kind, but the grapes were much finer, both in size and flavor-so much as to be like quite a different fruit.—Agr. Report, Ontario

PERFORATING POWER OF ROOTS.

It is indeed wonderful how easily the roots of plants and trees bore through hard, impacted soils in search of nourishment. Impacted soils in search of nourishment.—
They use for this purpose a sort of awl, of immense power, situated at the end of the roots, and capable, with the aid of the other root machinery, of thrusting aside heavy weights and getting through almost any obstructions. Yet the awl consists only of a mass of microscopic absorbent cells formed by protoplasm or vegetable mucus the fluid in which vital action is first set up .-The roots of the elm and the maple will bore through the hardest soils of walls or streets, enter drains, twine about water pipes and penetrate through the seams of stone and brick structures.

The roots of some plants have been known to pass through eighteen inches of solid brick work and make their appearance in a wine cellar below. Plants have a vast power in overcoming obstacles, when foraging for food. They are like a hungry animal which no fences can restrain when there is food beyond. The movements of roots in soils proceed on certain principles of utility in connection with the welfare of the plant. Some need much more moisture than others, and the roots will drive through rocks to obtain it; others need silicious food, and will penetrate through a clay bank to reach the desired foraging ground. The urgency with which nature drives plants and animals in pursuit of food is almost irresistible. - Jour nal of Chemistry.

The farm of Auchlochrach, at Glenrinnies, near the forest of Glenfiddoch, in Bannfshire, it is hardly necessary to state, is in the Highlands of Scotland. It is situated in a romantic glen, which is now become historical by reason of the great success of the splendid black polled cattle which are there produced. It was from this glen that the polled ox came, which, in the Smith-field show of 1872, beat every other breed, shorthorn included, and that at the early age of three years, at which tender period he weighed 2,400 pounds. McPherson, "of that ilk," sold six twoyear old beasts of this breed for \$152 each. Besides this, the average price of two-year olds from the whole of this Highland glen for several years past, has been from \$100 to \$140. Mr. McPherson possesses the only pure polled cattle in the glen, hence the greater value of his stock. Plenty of milk to begin with, good grass, turnips and straw blossoms of the heath and wild thyme that are the main materials of which this line importance.

two-year old beef is made. Surely this is creditable to this not inelegant-if black and hornless—stock.

STORING POTATOES FOR SEED.

The method of storing potatoes for seed deserves our serious consideration. toes that have been inadvertently left in the ground when the crop is taken up, if so deep as to escape being frozen, are always found fresh when turned up in the spring, and they are known to germinate more freely and have a stronger growth than potatoes stored in cellar or roothcuse. To preserve potatoes fresh for seed we would dig them with care as soon as ripe, let them dry for a few hours in the sun and pit them, not putting straw on them, but a sod; then, after a few days, cover them lightly with earth, and afterwards, before the hard frost sets in, put on as much additional earth as will secure them from the frost. In spring they will be found as fresh as when taken up out of the hill, and in the very best condition for the table as well as for seed.

SELECTIONS FROM OUR HORTIC LIUBAL EXCHANGIS.

The "Gardener's Monthly" says, in refer-The "Gardener's Mon'hly" says, in reference to the transplanting of the Arborvitae:—Arborvitae is transplanted in this part of the world all through the summer sesson. The earth has to be tightly packed round the roots; and this tight packing is not merely a light performance by heel and toe, but a ramming as if one was setting a post. If the weather be dry, or likely to be dry, water is given with the plant at planting. Unless the season be a very extraordinary ore, they do as well at any season. There is some risk in all.

THE JAPAN PEA.

The London "Garden" thus writes:—"We c'aim the honor, says the "Mobile Register," of having started a new interect in Japan Peas, and we are proud of it, for the Japan Pea is undoubtedly one of the best things for our climate. It is easily raised, will grow on almost any soil, and yields enoimously. As food for man, we think it is no equal in the pea or bean way. What is Japan Pea?" [We hope in the fall to be able to answer this question of the "Garden." We had the pleasure this season to present to our subscribers small samples of the Japan Pea, and we expect their value will be fully tried.—ED, F.A.]

It is only by slow degrees that one becomes acquainted with the manifold diseases to which plants are subject, and when these dependent rupon very obscure or minute moulds and insects, the progress is necessarily very slow. We have long since been acquainted with certain small exer scences on peach roots, which ultimately become more or less confuent and decay, but we have been quite at a I ss to account for them. The excrescences which are so common on pear leaves have at last brought to light an extremely minute four-footed acaroid, belonging to the same category as that which is so destructive to Nuts and Black Currants, and one of which is Nuts and Black Currants, and one of which is well known as inhabiting certain gall-like tubercles on Lime leaves. This bids fair to explain a host of affections to which the leaves of various trees are subject. We have now before us an explanation of the peach root excrescences. Mr. G. F. Wilson, to whom hor ticulture is so much indebted, has, in continuation with Mr. Loshua Sannders, just sent junction with Mr. Joshua Saunders, just sent to us from the Rev. J. Heyworth's, Westburyto us from the Rev. J. Heyworth's, Westburyon-Trym. some roots attacked by a minute
insect which is clearly very closely allied to
the Poylloxera. The way in which the roots
are affected is almost precisely that in which
the vine roots are attacked. The insect either
alone or in company, settles upen the roots,
the tissues on either side swell from hypertrophy, and there is thus a little nidus for the
insect which lives upon the juices. The little
nodes gradually decay, and the whole root
eventually become highly diseased. The insect
is yellow, like the young Phylloxera, about eventually become highly diseased. The insect is yellow, like the young Phylloxera, about one th rty-fifth of an inch in length, and two-thirds as much in with in the broadest part, with six legs and two three jointed antennae, which have two very minute bristles at the tip. How far this may be constant it is difficult to say, without an opportunity of examining the matter on the spot, for the insect does not travel well, as dont of eleven pieces of root one only pould be found bearing the little pest after very diligent search. Apparof root one only c uld be found bearing the little pest after very diligent search. Apparently the insects have just lost their activity, and are now gradually entering upon the coccus state, like the Phylloxera, for one or two specimens occur twice as large as the rest and much stouter. Further opportunities will doubtless occur of studying the insect, the discovery of which, especially considering its close resemblance to the Phylloxera, is of some investment.