## THE ELECTROLYTIC PRECIPITATION OF GOLD, SILVER AND COPPER FROM CYANIDE SOLUTIONS\*

By G. H. CLEVENGER

The present unsettled condition of the metal market, more particularly as regards zinc, which is used now almost exclusively as a precipitant in the cyanide process, makes a consideration of electrolytic precipitation, which is apparently the most feasible substitute, of particular interest at this time.

The electrolytic precipitation of gold, silver and copper from cyanide solutions in connection with the cyanide process of gold and silver extraction, has frequently been the subject of satisfactory laboratory experiment, but much less frequently of successful commercial application. This comes about through the fact that experiments carried on for a few hours in the laboratory give no true indication of the life of anodes, formation of by-products,

etc., to be expected in continuous operation.

The solutions which are precipitated in present-day cyanide practice may contain a great variety of compounds arising from the decomposition of the cyanide, as well as from its combination with elements occurring in the ore treated, or introduced by chemical methods of precipitation. The principal constituents of such solutions, if zinc precipitation were not used, would be: Simple alkaline cyanides, alkaline hydrate, gold and silver, and copper if it occurs in a soluble form in the ore undergoing treatment. The proportion of these various constituents present, particularly of the gold and silver, is extremely small compared with the amounts of metal present in solutions made by extraction processes in other industries.

In general the simple alkaline cyanide, as indicated by the Liebig titration test, will range in present-day practice from a trace to 0.25 per cent, or a maximum of 1/400 of the solution. In certain cases of sand treatment of silver ores stronger solutions are used, but in general the cyanide strength of the solutions precipitated will fall well below the upper limit given. The alkali generally added is lime, although caustic soda has been used. There is rarely over 100 points present and most generally much less than this, and in some cases practically no protective alkalinity. (One hundred points of alkali correspond to a saturated solution of lime in distilled water at 20° C., i.e., 0.13%). The proportion of alkali present is therefore in many cases less than the cyanide.

The gold present will range from nothing to 0.5 ounce per ton, and the silver from a trace to 10.0 ounces per ton. In general the proportion of gold and silver in solution is

much less than the upper limits given.

The grade of the ore treated does not always form a safe criterion of the gold and silver content as the solution, for the reason that the ratio of the weight of solution used to the weight of ore treated, or, as it is generally termed, "the dilution," varies greatly, but in general, as might be expected, is greater with high-grade ores. Thus, if three tons of solution are used in treating one ton of ore, we have a 3 to 1 dilution, and the recoverable value of the ore has been transferred to three parts of solution, the average value of which would be one-third of the recoverable value of the ore treated; or, to take the concrete case of an ore assaying 0.50 oz. of gold per ton (approximately \$10 per ton) from which 90% of the gold can be extracted by cyanide solution, there would be dissolved by the solution 0.45 oz. per ton of ore treated. With a 1 to 1 dilution the average content of the solution per ton would be 0.45 oz., with a 3 to 1 dilution the average content of the solution per ton would be 0.15 oz., with a 5 to 1 dilution the average content of the solution per ton would be 0.09 oz.

It will, therefore, be apparent that this stage of the cyanide process, the transference of the gold and silver from the solid state as occurring in the ore, to the liquid state as dissolved in the cyanide solution, is unlike most other steps in metallurgy, which are in general to successively concentrate the metal sought into a smaller weight of material. Exceedingly small as is the proportion of gold and silver present in ores which it is possible in present-day practice to profitably treat by cyanidation, the proportion of gold and silver in the solutions requiring precipitation are generally still smaller.

Perhaps a clearer idea of the small amount of metal involved, particularly in the case of gold, will be obtained by expressing the proportion fractionally. In solutions containing 0.50 oz. of gold per ton, an unusually high proportion, the gold would form only 14.6/1,000,000 or 1/58,332 part of the solution. In the case of waste solutions, which are or should be precipitated before they are discarded, it is not unusual to deal with solutions containing less than 0.01 oz. of gold per ton, or only 1/2,916,600 of the total weight of the solution. Tail solutions containing only 1 or 2 cents values per ton are regular practice at many mills using zinc dust precipitation.

At the present market price of silver (about 50 cents per ounce) there would be required about forty times the weight of gold present to give an equivalent value in silver. Therefore, in the treatment of silver ores a much greater weight of metal would be involved, but still the relative proportion of metal to the total weight of solution is small. As gold and silver most frequently occur associated, the absolute weight of metal to be precipitated will depend upon the ratio of these two metals in the ore treated. The greater weight of metal involved in the treatment of silver ores or ores in which silver predominates, perhaps in a certain measure explains the greater ease with which solutions resulting from the treatment of such ores are handled by all precipitation processes.

Copper in solution is an incident of gold and silver extraction, as at present there is no effort made to recover copper in this way; however, this is an interesting possibility, and would be feasible provided the cyanide combined with the copper could be economically regenerated. In many cases the proportion of copper in solution will be less than that of the gold and silver, and, so far, even with electrolytic precipitation, there has been no serious attempt to treat gold and silver ores by the cyanide process unless the proportion of readily soluble copper was considerably below 1.0 per cent. The interference of copper with other methods of precipitation, as well as its prejudicial effect upon extraction, make a consideration of its behavior with electrolytic precipitation of particular interest, but beyond the province of the present paper.

The electrolytic precipitation of gold and silver from cyanide solutions, therefore, involves the practically total precipitation of an extremely small weight of metal from solutions containing a comparatively small proportion of soluble salts, and which are therefore poor electrical conductors. The fact that the alkaline cyanides are readily decomposed by electrolysis and that the economy of the cyanide process depends upon the continued re-use of the solvent make it imperative to precipitate with the minimum decomposition of cyanide, and preferably with a regeneration of cyanide. The difficulty of the problem at best will therefore be apparent.

<sup>\*</sup> Extracts from a paper presented at the 28th general meeting of the American Electrochemical Society, in San Francisco, Sept. 16 to 18, 1915.