

The Genadian Root Pulper.

Mr. Palmer, of Mount Vernon, has farnished the following detailed description of the machine he has constructel for the purpose of pulping roots. He gives his brother farmers the full bencfit of his own thought and ingenuity, which have been successfully oxercised in the production of a machine that the Canadian stock feeder will find it greatly to his advantage to introduce into his farm connony.
constriction of frampmorh.
The framework consists of four posts, two side rails, two side hoards and two cross rails.
The poats are made of 3×4 inch stuff, and are each 3 l feet long; the side rails are of 2 $x 9$ inch stuff $3 \frac{1}{2}$ feet long; the side boards are of $1 \frac{1}{2}$ inch stuff 19 inches wide and 3 feet long; and the cross rails are 2×4 inch stuff 1s feet long.
The above dimensions are given as outside measuroment.
Measuring 19 inches from the top of the post, a mortice is cut to receive the tenon of the side rail. The mortices for the cross rails are cut just above, and, of ccurse, at right anyles to those for the side rails. A groove 1 inch wide and 1 inch deep is cut into each post, from the mortice for the side rail to the top. This groove is to receive the side boards, which are simply slipped in after the machine is mado and put together. Feet of a suitable length are firmly fastened, by means of mortice and tenon, to the bottoms of the posts.
constrection of tue culinder.
The cyliader is trelvo inches long and ten inches in diameter. It must bo made of the best matorial, such as a good oak knot. The shaft which carrics it is twenty three inches long and two inches in diamoter. Beginning at one end of the shaft, and dividing it into parts, wo have two inches for boxing, twelve inches for cylinder, two iaches for
boxing, two inches for balance wh .wis five inches for pulles.

It is important that the pulley and balance wheel should be on the same side of the machine, since then the other side is clear to remove the puilp from.
The pulley may vary in diameter according to the amount of speed desired. The one on my machine is twenty inches n diameter.

The shane of the teeth for the cyhnder can only be shown correctly by a drawug. (Fig. 1). Their dimensions are 23 inches long, \because inch wide at the widest part, and 3.16 of an incts thick-not $\frac{1}{2}$, as stated in my former letter.
I must here acknowledge my indebtedness to Messrs. Maxmell \& Whitelaw, of Paris, Ont., for the form and manufacture of the teeth.
The teeth are made of the best of steel. In putting them in great care is necessary in order to have them all project exactly the same distance abovethe cylinder. In setting, bore a hole slightly smaller tann the shank of the tooth. Drive in the tooth the proper

distance, and, to hold it firmly, drive a largo cut nail on ono side of it. They should not
be set promiscuously over the cylinder, bus in four distinct lots of twenty or twenty-five each.
cosistiction of the arche
This is probably the most difficult part to describe clearly, as well as to make. Figure 2 exhilits to the cye the relative positions of the cylinder, arch, side hoards and side rails.

In this diagram, a be represents the cylinder, the centre of which is $d, g h f$ the arch, of which e is the centre; $i k$ the feed board, extending from the hopper to the top of the cylinder; $/ m$ the line between the side rail below and the side board above. The diameter of the arch is twice as great as that of the cyliniter after the tecth have been in. sorted.
The position of the arch in this diagram is slightly different from that described in my former letter. The change, however, I consider an important improvement npon the original.
The arch is neccosarily in twe parts, the lesser of which is built, as can be seen in Fig. 2 , in the side rails, and the remainder in the side boards. It is composed of small segments slipped into a groove cut into the side boards and side ralls. The groovo is one and a half inches wide and half minch deep. If the segments be made of hard wood it is only necessary to fasten a small iron bar to the bottom of the arch at h to prevent the too rapid wear of the wood; this bar must be set as close to the teeth as possible. If, on the other hand, the segments be made of soit wood, the arch must then be lined with iron.

To guard against thoughtlessuess on the part of the operator, a lwole should be cut through the arch at $x y$. The object of the hole is to enable the operator to clear the machive withont putting his hand under the arch, for sometimes the roots will get wedgerl together, and so stop feeding. When this occurs, all that has to be done is to put a small stick through the hole, and start the roots on in their order.

