Chicago Drainage Canal.

By Rankinc's Formula.

$$
\begin{aligned}
D & =8.025 c A \sqrt{h} \\
& =8.025 \times \cdot 618 A \sqrt{10} \\
& =8.025 \times 618 \times 3.16 A \\
& =15.67 A \\
\therefore \quad A & =\frac{D}{15.67}=\frac{3}{15.67} \\
& =1915 \text { square feet. }
\end{aligned}
$$

$$
\text { Let } x=\text { diameter of orifice in feet. }
$$

Then--

$$
\begin{aligned}
& 7854 x^{2}=\cdot 1915 \\
& \begin{aligned}
\therefore x^{2}=\frac{1915}{7854} & =\cdot 2439 \\
x=\sqrt{\frac{2439}{24}} & =\cdot 494 \text { feet. } \\
& =5 \cdot 84 \text { inches. }
\end{aligned}
\end{aligned}
$$

2ndly. Suppose now a second orifice, made in the bottom of the tank, capable of discharging $\cdot 2$ cubic feet per second at a like head of pressure; what would be the diameter of the orifice?

Let the same formula and notation be used.

$$
A^{\prime}=\text { area of second orifice. }
$$

Then-

$$
\begin{aligned}
& A^{\prime}=\frac{D}{15 \cdot 67}=\frac{\cdot 2}{15 \cdot 67}=\cdot 01277 \text { square feet. } \\
& \text { Let } x^{\prime}=\text { diameter of less orifice. }
\end{aligned}
$$

Then-

$$
\begin{aligned}
& \quad 7854 x^{\prime 2}=01277 \\
& \therefore x^{\prime 2}=\frac{.01277}{\cdot 7854}=\cdot 0164 \\
& x^{\prime}=\sqrt{\cdot 0164}=128 \text { feet }=1 \cdot 54 \text { inches. }
\end{aligned}
$$

Suppose now, with a constant supply of three cubic feet, both orifices are opened, discharging $3 \cdot 2$ cubic feet per second, the problem is to find how much the level of the tank must fall to establish equilibrium between influx and efflux.

At first blush, one would be led to infer that, with the outflow in excess of the inflow, the tank would eventually be drained of all its contents. But this is not so, as the following computation demonstrates:

Let $h_{1}=$ equal the depth of water in the tank or new head of pressure to maintain equilibrium of supply and disdharge.

Then

$$
\begin{aligned}
D & =8.025 c\left(A+A_{1}\right) \sqrt{h_{1}} \\
& =8.025 \times \cdot 618(\cdot 1915+\cdot 01277) \sqrt{h_{1}} \\
& =8.025 \times \cdot 618 \times \cdot 2043 \sqrt{h_{1}} \\
& =1.0133 \sqrt{h_{1}}
\end{aligned}
$$

Square both sides.
Then

$$
\begin{gathered}
\left.D^{2}=\overline{1.0133}\right)^{2} h_{1} \\
h_{1}=\left(\frac{1.0133}{D}\right)^{2}=\left(\frac{3}{1.0133}\right)^{2} \\
=\overline{2.96})^{2}=8.76 \text { feet. }
\end{gathered}
$$

[^0]
[^0]: \therefore.to maintain equilibrium, there would be a depression in the water surface of the tank of 1.24 feet ; and it would remain at this elevation whiie the conditions of the problem remained unchanged.

