ROYAL AGRICULTURAL COLLEGE.

SESSIONAL EXAMINATION, JUNE 24, 1851.

MORNING-MATHEMATICS & ARITHMETIC.

1. If the two sides of a right angled triangle are respectively 30 feet and 60 feet; What is the length of the third side?

2. If the radius of a circle be 60 feet, what are its circumference and area; and show how you obtain the value of $\pi = 3.14159$?

3. What is remarkable about the regular hexagon inscribed in a circle? And how has the sexigesimal division of the circle been obtained from this relation, also point out the advantages of the decimal division, and convert 6° , 3° , 3° into decimal seconds?

4. What is the difference between 25 and $\frac{1}{3}$, and express 111' as a vulgar fraction?

5. Extract the square root of 9876.543 and the 7th root of the same by logarithms.

6. Given one side of a triangle = 60 feet and two angles respectively 45° and 75° to find the other sides and angles? And also the area?

7. If in a triangle two sides are given, 50 feet and 100 feet respectively and the included angle 30° , what is the 3rd side and the other angles? And the area?

8. The sides of a triangle are respectively 36, 48, and 60 feet, find the angles and area?

9. Prove Ptolemy's theorem, and deduce from it the following relation, expressed in Trigonometrical language.

When η and ϵ represent any two arcs, and r the radius

r. Sine $(\eta \pm \epsilon) = \text{Sine } \eta$. Cos $\epsilon \pm \text{Cos } \eta$. Sine ϵ and from this prove that in trigonometrical language $r \text{Sine } \eta = 2 \text{ Sine } \frac{1}{2} \eta$. Cos $\frac{1}{2} \eta$;

show also how this is used in finding the rule or formula for the area of a triangle in terms of the sides.

10. Solve the equation $2x + \frac{1}{2}x + 3 - 5x = 1 - 2x$.

& Marshall