A locomotive having cylinder 17 inches diameter and 24 inches long, with four coupled driving wheels of 62 inches diameter over the tires, made the run over the entire distance, completing the work of one division each day, with a freight train of a weight corresponding to its capacity. The fuel was of the same quality, and was accurately weighed, and the trials took place at a time of year and time of day when the variation of atmospheric conditions was inconsiderable. The intention was to compare the cost of working upon the various divisions, and no effort was spared to ensure accuracy in the result.

The following table gives the particulars:-

							_				
	Per Ton.	Aver-	1801.	. 1221	.1214	.1783	0000.	.1133	.1126	.1099	1201.
Coal in Ibs. per mile.		West.	.0993	59.16 .0733 .1708	.1352	. 1262	. 1050	.116	.0822	1941.	.1526
		าระบู	34-39: -1169.	.0733	.1076	13.52 .0904	.0751	.1106	.:431	.0738	.0616
	Per Train.	.JesW	34 - 39:		42.57	43.52	45.24 46.76	36.80	28.23	50.22	49.45
		hesa	57.75	36.20	48.07	44.20	45.24	\$6.62	63.77	41.56	344 34.70 49.45
Tons per train.		West) of	346	315	345	345	344	344	344	344
		Hast.	1 5	464	-48	489	617	541	446	563	263
must start capa l		East.	21 35	994 21 32	275 19:35	110 21 35	300 27:45	225 23:35		389 24 35	787 24 35
Lift between termi- nals, feet.		West	;	994	1 275µ	110	38	225	- -	380/2	787
		last.	615		305	0	:	265	989 19 35	:	-
Differences in altitude of terminals, feet,		53	937	39	-2	230	345	2067	389	787,	
Miles apart.			8	88	113	95	125	764	17	58	913
BIVISION WEST TO RAST			Sarnia & Stratford	Stratford & Toronto	Toronto & Belleville 113	Belleville& Brockville	Brockville & Montreal 125	Montreal & Richmond	Richmond & Island Pond	Island Pond & Gorham	Gorham & Fortland

The cars were loaded going eastward and empty westward, in consonance with the general direction of traffic. It will be noticed that the consumption of fuel per ton per mile is fairly proportional to the lift in feet. In cases where this rule does not obtain, excessive curvature, the assistance of a pilot engine, or a longer run between stations, reducing the percentage of coal used in firing up, may be said to account for the difference.

The variation in the rate of consumption is from to 2.3 in connection with eastbound, and 1 to 1.85 with westbound trains. In August, 1882, arrangements were made under which the Grand Trunk and Great Western Railways were cemented into one system under Grand Trunk management. Each company owned a line from the west to the Niagara frontier, and also to Toronto. Owing to representations made by myself, it was decided to make use of the Great Western line, which with its lower gradients runs nearer to the level of the lakes, for eastbound "through" freight traffic, and to convey the westbound business, consisting largely of empty or return cars, by way of the main line of the Grand Trunk, which rises in the neighbor-

hood of Stratford to an elevation of 1,000 feet. Thus the partial effect of a double line of railway was secured, and the easiest gradients were made use of for the heaviest trains.

The new, or what has been since called, "circular" system went into operation September, 1883, and the first three months gave the following results:—

ì	October 1st to December 31st.								
	Western	Division.	Central Division.						
	1883.	1582.	1883.	:582.					
Coal tons	18,365 505,821	20,669 550,170	33.878 794,608	32,48.					
Car "	10,432,390	10,315,884	19,466,668	827.03 19.747.68					
Cars per train Coal, lbs., per train	20 6	18.7	24.5	23.9					
mile	72 61	75.14	85.27	78 50					
mile	3.52	4.01	3 48	3.20					

The two divisions, viz., the Western and Central, met at Toronto and the figures show how the former, working under the "circular" system, compared with itself when under the old system, and with the Central division, upon which the system remained the same. It will be seen that while the coal requirements per car per mile increased on the Central division, due to various causes applicable to both, by six per cent., they decreased on the Western division by twelve per cent., thus effecting a saving of over 2,500 tons, and a very much larger saving, if it is, as it reasonably may be, assumed that the then prevailing conditions would have warranted the rate of increase which obtained upon the Central division. It is an interesting fact that while the empty engine mileage westward advanced by 37 per cent. on the Central, the advance was 18 per cent. on the Western division, showing the advantage of a better balancing of traffic under the "circular" system. The desirability of low grade railways is of course understood, but a greater regard for the cost of operation, especially in the matter of fuel, would often prevent the construction of lines of railway which are destined from their inception to be unprofitable ventures. It may be safely asserted that the great increase which has taken place within comparatively recent years in the haulage power of locomotives has reduced the rate of coal consumption per unit of work (one ton to one mile). The train mile, that most unreliable standard of work measurement, has in the past unquestionably been the means of encouraging the use of small engines, and thus of interfering with economical operation.

It may, however, be doubted whether improved service in the form of more roomy coaches, frequent trains, and more rapid transport induced by keener competition, has not more than absorbed the savings which might otherwise have been effected. The old 40-feet coach has expanded into the 55-feet car of to-day, with its wash and smoling rooms and other conveniences not thought of twenty-five years ago, so that its weight has been added to, without material or proportionate increase of carrying capacity. The calls upon the locomotive boiler for steam to warm the cars, to apply the brakes, to ring the bell, and to signal the train, could only be effectually responded to by a more frequent resort to the coal bin, and these calls must of necessity be intensified with an increase in the rate of train speed. To reduce the drain upon the boiler, the