play a direct role in tropospheric photochemistry and an indirect role in stratospheric photochemistry.

(b) Nitrogen substances

(i) Nitrous oxide (N₂O)

The dominant sources of N_2O are natural, but anthropogenic contributions are becoming increasingly important. Nitrous oxide is the primary source of stratospheric NO_x , which play a vitaL role in controlling the abundance of stratospheric ozone.

(ii) Nitrogen oxides (NO_x)

Ground-level sources of NO_x play a major direct role only in tropospheric photochemical processes and an indirect role in stratosphere photochemistry, whereas injection of NO_x close to the tropopause may lead directly to a change in upper tropospheric and stratospheric ozone.

(c) Chlorine substances

(i) Fully halogenated alkanes, e.g. CCl₄, CFCl₃ (CFC-11), CF₂Cl₂ (CFC-12), C₂F₃Cl₃ (CFC-113), C₂F₄Cl₂ (CFC-114)

Fully halogenated alkanes are anthropogenic and act as a source of $C10_x$, which plays a vital role in ozone photochemistry, especially in the 30-50 km altitude region.

(ii) Partially halogenated alkanes, e.g. CH₃Cl, CHF₂Cl (CFC-22), CH₃CCl₃, CHFCl₂ (CFC-21)

The sources of CH₃Cl are natural, whereas the other partially halogenated alkanes mentioned above are anthropogenic in origin. These gases also act as a source of stratospheric C10_x.

(d) Bromine substances

Fully halogenated alkanes, e.g. CF₃Br

These gases are anthropogenic and act as a source of BrO_x , which behaves in a manner similar to $C10_x$.

(e) Hydrogen substances

(i) Hydrogen (H₂)

Hydrogen, the source of which is natural and anthropogenic, plays a minor role in stratospheric photochemistry.

(ii) Water(H2O)

Water, the source of which is natural, plays a vital role in both tropospheric and stratospheric photochemistry. Local sources of water vapour in the stratosphere include the oxidation of methane and, to a leaser extent, of hydrogen.