In the *first* series, the first term and com. diff. are 1 and $\frac{1}{3}$; in the *second*, 1 and $\frac{3}{3}$; then by the question,

$$\frac{n}{2}\left\{2+(n-1)\frac{1}{4}\right\}=4\frac{n}{2}\left\{2+(n-1)\frac{1}{3}\right\};$$

$$\therefore n=37; \frac{3}{2}.$$

8. The attraction of a planet upon a body at its surface varies directly as the planet's mass and inversely as the square of its radius. The length of a pendulum varies directly as the attraction and inversely as the square of the number of beats which it makes in a given time. The mass of the earth being 75 and of the moon 1, the radius of the earth 4,000 miles and of the moon 1,100, and the length of a pendulum which beats 5 times in 2 seconds at the earth's surface being 6.26 in., find the length of a second's pendulum at the moon's surface.

8. For earth we have
$$A = p \frac{M}{r^2}$$
, $l = p \frac{A}{n^2}$, by

the question, where A = attractive force, M = mass, r radius, n number of beats, and l length of pendulum: from these = ns,

$$A = \frac{\sqrt{939}}{1600\sqrt{2}}$$
, and p (constant factor)
= $400\sqrt{\frac{313}{6}}$.

$$l = p^{3} \frac{M}{r^{2}n^{2}}$$

$$= 160000 \times \frac{313}{6} \times \frac{1}{1210000}$$

$$= 6.80 \text{ in}$$

9. From a company of 15 men, 6 are selected each night as a guard. How often, respectively, will A and B be together (1) with C? (2) without C? (3) with C or D? (4) with C and D?

9. (1)
$$\frac{12, 11, 10}{\frac{3}{2}}$$
, (2) $\frac{14, 13, 12, 11}{\frac{4}{2}}$, (3) $2\frac{12, 11, 10}{\frac{3}{2}}$, (4) $\frac{11, 10}{\frac{2}{2}}$.

10. Given
$$x^2 + \frac{a-b}{ab}x + \frac{ab}{a-b} = 0$$
.

(1) Express b in terms of a when the two values of x are (a) equal in magnitude and

opposite in signs; (3) equal in magnitude and of like signs.

(2) If $x_1 x_2$ be the roots, express the value of $\frac{1}{x_1} + \frac{1}{x_2}$ in terms of a and b.

10. (1) (a)
$$\frac{b-a}{2ab}$$
 = either root;

$$\therefore \frac{(b-a)^2}{4a^2b^2} = \frac{ab}{b-a} \text{ or } b = \frac{a}{1-a\sqrt[3]{4}},$$

$$(\beta) b = \frac{a}{1+a\sqrt[3]{4}}.$$

(2)
$$\frac{1}{x_1} + \frac{1}{x_2} = \frac{x_1 + x_2}{x_1 - x_2} = -\left(\frac{a - b}{ab}\right)^2$$
.

UNIVERSITY OF LONDON.

MATRICULATION EXAMINATIONS'

JUNE, 1883.

AI THMETIC AND ALGEBRA.

Examiners—Dr. John Hopkinson, M.A., F.R.S., and Benjamin Williamson, Esq., M.A., F.R.S.

- 1. From the sum of $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, and $\frac{1}{4}$ of a pound subtract the sum of $\frac{1}{6}$, $\frac{1}{6}$, and $\frac{1}{6}$ of a guinea, and express the result as a fraction of five pounds reduced to its simplest form.
- 2. Express $\sqrt{\frac{0.678 \times 9.01}{0.0234}}$ correctly to the nearest integer.
- 3. Reduce 0.01747 to a vulgar fraction 0.002477 in its simplest form.
- 4. A reduction of 10 per cent. in the price of coal would enable a purchaser to obtain for the sum of £13 10s. two tons more than at the higher price. What may be the price of coal before reduction?
- 5. Divide £11 4s. Od. between three men, four women, five boys, and six girls, in such wise that each woman has one-fourth less than a man, each boy !wo-sevenths as much as a man and woman together, and each girl one-fifth as much as a man, woman, and boy together.
 - 6. Simplify

$$\frac{x^2+y^2}{\frac{y}{y}-x} \times \frac{x^3-y^3}{x^3+y^2}; \text{ and } a \times \frac{1}{1+\frac{a+1}{3-a}}$$