
PROPOSITION A. THEOREM.

If two sides of a triangle be equal, the angles opposite those sides must also be equal.

In the isosceles triangle ABC, let AC=AB. (Fig. 1.)

Then must $\angle ABC = \angle ACB$.

Imagine the $\triangle ABC$ to be taken up, turned round, and set down again in a reversed position as in Fig. 2, and designate the angular points A', B', C'.

Then in $\triangle s$ ABC, A'C'B',

$$AB=A'C'$$
, and $AC=A'B'$, and $AC=A'B'$,

 $\therefore \angle ABC = \angle A'C'B'. \qquad \qquad \mathbf{I. 4.}$

But $\angle A'C'B' = \angle ACB$;

 $\therefore \ \angle ABC = \angle ACB.$ Ax. 1. Q.E.D.

Cor. Hence every equilateral triangle is also equiangular.

Note. When one side of a triangle is distinguished from the other sides by being called the Base, the angular point opposite to that side is called the Vertex of the triangle.

an the be

> ic T