tively low elastic limit. With care it can be forged and rolled. It has found its principal application in castings for crushing and grinding machinery and railroad crossings. Manganese steel has the peculiar property of being toughened and softened by quenching in water, resembling copper in this respect. All manganese steel castings are subjected to this treatment to remove brittleness.

Silicon Steel.—There are two types of silicon steel, one of which has found some application as an engineering steel. This steel, frequently called silico-manganese steel, is generally covered by the following limits of composition: Carbon, 0.45 to 0.65 per cent.; silicon, 1.50 to 2.00 per cent.; manganese, 0.50 to 0.80 per cent.; the manganese is normal, contrary to what is indicated by the name. The principal application of this steel is for automobile springs, and to some extent for gears. It fibres readily through heat-treatment, and is very brittle in the direction at right angles to rolling. It is very sensitive to heat-treatment, and a relatively small variation in annealing temperature after quenching has a strong effect on the results obtained.

The other type of silicon steel contains 3 to 5 per cent. silicon, is low in carbon and manganese and is extensively used for electrical transformer sheets on account of its high permeability and electrical resistance. It is weak and has no constructural value.

Nickel Steel.—Nickel alloys with steel in all proportions, but by far the most important nickel steel, from an engineering standpoint, is the law and mediumcarbon steel with 3 to 4 per cent. of nickel, commonly known as 31/2 per cent. nickel steel. The presence of manganese in nickel steel is very essential, as it has a marked effect on the mechanical properties. amount of manganese should range from 0.50 to 0.80 per cent. This steel has been extensively used since its introduction in 1889, and is a good all-round engineering and structural steel with considerably higher elastic limit and tensile strength than the corresponding carbon steel, and with practically the same degree of ductility. The low-carbon steel, 0.10 to 0.20 per cent. carbon, is used extensively for case-hardening parts. It case-hardens more readily than carbon steel and gives a harder casing with a strong, tough, fibrous core. A great deal of nickel steel with carbon from 0.20 to 0.35 per cent. has been used in shapes and plates as rolled, and in annealed eye-bars for bridge construction. In this condition, which is not to be recommended for forgings, the following are typical physical properties: Elastic limit, 45,000 to 60,000 lbs. per sq. in.; tensile strength, 80,000 to 100,000 lbs. per sq. in.; elongation in 2 inches, 20 to 15 per cent.; reduction of area, 40 to 25 per cent. Annealed nickel steel forgings have only slight advantage in strength over carbon steel, and consequently are not advantageous either from an engineering standpoint or commercially unless heat-treated. With heat-treatment it gives considerably higher strength than carbon steel, combined with greater ductility or toughness. It does not give as high values as the nickel-chromium and chromiumvanadium steels. Nickel steel rolls and forges readily and machines easily. It develops a very thick, hard scale which is apt to give considerable trouble in dropforging and is hard on the dies. Nickel steel is also very liable to develop seaminess, especially when made in large heats and cast into large ingots, as is now eustomary. It requires a larger discard to ensure soundness. The use of nickel steel in forgings, and particularly drop-forgings, is falling off in favor of other alloy steels with greater values.

Chromium Steel.—The use of this steel is confined principally to a few specialties and it is not in general use as an all-round engineering steel. One of the principal uses is for balls and ball races. The great mineralogical hardness obtained by quenching is very desirable for this purpose. The steel for this application contains approximately 1 per cent. each of carbon and chromium.

Chromium steel is also used for stamp-mill shoes, and in combination with soft steel in laminated plates for construction of burglar-proof safes, and in the same

combination in bars for jails.

The low- and medium-carbon types, containing 0.80 per cent. or less of chromium, have somewhat higher mechanical properties than the corresponding carbon steel. It is not used to any great extent, other alloy steels being superior, both in static and dynamic strength. Chromium steel is also very liable to crack and check in heat-treatment.

Nickel-Chromium Steel.—The addition of chromium to nickel steel has a marked effect, greatly increasing the strength and resistance to shock and particularly the mineralogical hardness. It is more difficult to forge and heat-treat and harder to machine, and is also liable to the seaminess frequently present in nickel steel. There are three types of this steel, differing both in the percentage of nickel and chromium, and all with low or medium carbon:

	Nickel	Chromium	Carbon
1st	3.5 p.c.	1.50 p.c.	0.25 to 0.45 p.c.
2nd	2.0 p.c.	1.00 p.c.	0.10 to 0.45 p.c.
3rd	1.5 p.c.	0.50 p.c.	0.10 to 0.45 p.c.

The first type is used principally for armor plate and armor-piercing projectiles and came into use about 1895, superseding the nickel plates and chromium projectiles. The other two types were developed by the automobile industry. The second type is largely for automobile forgings. It gives high strength with heattreatment, has great hardness and good shock and fatigue resisting qualities. The third type is a largely used all-round engineering steel. It is used for automobile forgings and for a variety of miscellaneous drop-forgings and machine parts. It is an excellent case-hardening steel, carbonizing readily. This type is more tractable in working, heat-treating and machining than the other two. It is also somewhat lower in tensile strength.

Vanadium Steel.—The addition of small amounts of vanadium, generally under 0.25 per cent., to simple carbon steel or any of the alloy steels increases very considerably—about 30 per cent. or more—the elastic limit and breaking strength, without materially affecting the ductility. To an even greater extent it increases the resistance to shock and fatigue.

The vanadium steel which has been up to now most generally used is a chromium-vanadium steel of the following typical composition: Carbon, 0.10 to 0.55 per cent.; manganese, 0.50 to 0.80 per cent.; chromium, 0.80 to 1.00 per cent.; vanadium, over 0.15 per cent.

The lower carbon type, 0.10 to 0.20 per cent., is used mainly for case-hardening and is the best steel for this purpose. It carbonizes readily, gives the highest maximum carbon and finest grain. The casing is very strongly coherent to the core, very hard, tough and strong and practically free from any tendency to flake or powder. The core is remarkably strong and tough.

The higher limits of earbon, 0.45 to 0.55 per cent., are extensively used for automobile and locomotive