er had, with of the cow peculiar ef-

y convinced rs from bad n as I could the fact by , with how m Professor to copy the resented to of, and their

rly furnished at the house rise, which, ight; it was py. Others peculiarity; that any one sual, though ed from the he observant rofessor, such to pass withcroscope was d. The first n of a fungus e milk was a

he milk globss, and overto cover the tainted milk. ing globules; and out a little aside are a few small spores and some blood cells.



On the 5th, when the milk was four days' old, and had become sour, another examination was made, and there appeared two species of algæ, (fig. 7,) a few spores and arthrococcus, or sour milk cells, a few of which only are repre-

sented. On the 8th a further

examination brought similar results, (as shown on figure 8.)

Did the spores from which these plants sprung come from the water with which the milk vessels were washed, and, adhering to their sides, infect the milk and

fill it with their numerous progeny? or

did they come from the water the cows drank, and pass through their blood to reach the milk? The water used by the cows, and which made its way over the mossy ground, showed the same



germs found in the milk. Examined October 9th under a magnifying power of three hundred diameters, there appeared an abundance of spores and diatoms, the latter only being common to spring water. (Fig. 9.) After stand-

ing closely corked thirty days, full

grown plants like those found in the milk appeared in the water. (Fig. 10.) Having found the same spores in the water the cows drank, and in their milk, it was now desirable to know positively whether they passed through the



vascular system of the cows. On the same day, October 9th, blood was taken from one of the cows giving tainted milk, and