TO THEIR STATE OF IONIZATION-MACGREGOR. 239

data were available, the absorption spectra were similarly affected by elevation of temperature and increase of concentration.

THE OCCASIONAL CONSTANCY IN THE DIFFERENCE BETWEEN THE MOLECULAR VALUES OF PROPERTIES OF SOLUTIONS HAVING THE SAME MOLECULAR CONCENTRATION.

The difference between the values per grammc-equivalent of any property for two simple solutions, 1 and 2, of different electrolytes but of the same concentration, will be

$$(\mathbf{P}_1 - \mathbf{P}_2) / n = k_1 - k_2 + (l_1 - k_1) a_1 - (l_2 - k_2) a_2, \dots, (11)$$

Now α in all cases diminishes as n increases. Provided therefore, the values of the (l-k)'s have the same sign, and the rates of change of the α 's with concentration are inversely proportional, or approximately so, to the (l-k)'s of their respective solutions, we shall have $(P_1 - P_2)/n$ exactly or approximately constant. If we regard $(P_1 - P_2)/n$ as approximately constant when its absolute value changes with n only to a small extent, then the more nearly the (l-k)'s) and the α 's are inversely proportional to one another the more nearly constant will $(P_1 - P_2)/n$ be. If, however, we regard this quantity as constant when its values for different values of n differ from one another by only a small percentage, then the magnitude of the (l-k)'s becomes of importance, and we may have $(P_1 - P_2)/n$ approximately constant, even though the (l-k)'s may be far from being inversely proportional to the α 's.

In the case of certain solutions of moderate strength, this approximate constancy of $(P_1 - P_2)/n$ has been observed by Valson and Bender* for the density and the refractive index, by Wagner+ for viscosity constants, and by Jahn[‡] for the electro-magnetic rotation of the plane of polarization; and a very close approximation to constancy in the case of the specific

^{*} Wied. Ann., xxxix, (1890), p. 89.

[†] Ztschr. f. phys. Chemle, v. (1890), p. 31.

t Wied. Ann., xlili, (1891), p. 280.