38. The V-threaded screw is represented on Plate VI., figs: 83 and 84. It is usual to denote the pitch, which Varies according to the diameter of the screw, by so man
threads threads per inch in length; in the example shown the tocrew is $21^{\prime \prime}$ diameter, and has 4 threads per inch, equivalent to $\frac{1}{2 \prime \prime}$ pitch. In fig. $84 a b$ is the pitch, which is set off an ang the centre line, or upon the outline of the cylinder, as shown at 4, 4, a,b; having thus divided the screw for the pitch, draw $a a^{\prime}$, $a b^{\prime}$, so that $a^{\prime} x b^{\prime}$ contains an angle
 botraw $b b^{\prime}$ parallel to $a a^{\prime}$ mэeting $a b^{\prime}$ in b^{\prime}; b^{\prime} is the
bothom of the groove; draw $b^{\prime} 4^{\prime}$ parallel to the axis,
meeting the meeting the centre line of fig. 83 in 4^{\prime}; with $\mathrm{C4}$ ' as a radius, describe the semicircle $4^{\prime} 2^{\prime} 0^{\prime}$, which will reprepeant ihe bottom of the groove or thread.
The the curves $4 b, 4 a, a a, b b$, \&c., which form the tops of the threads, and $a^{\prime} a^{\prime}, b^{\prime} b^{\prime}$, \&c., which form the bottoms of for theads, are obtained in the same manner as described termed the space, and is occupied by a abob, fig. 84, is termed the space, and is occupied by a projecting thread in the nut. In this example we have divided the semicircles which form half the end-elevation into 4 equal parts which form half the end-elevation into 4 equaldiameter, and having twc threads per inch, or $\frac{1_{2}^{\prime \prime}}{}$ pitch. each curr, therefore, the pitch into 8 equal parts. As A section of. the thread of the screw made by a plane $a b$, half in maling a revolution passes through a space passing through SP, fig. 86, is a square whose side $=\frac{1}{2}$ throuvh the curve, as seen in fig. 84, will have passed the pitch, the space being a square of equal side. The Frough the space cb, or $\frac{1}{2} a b$, numbered 1, 2, 3, 4: thread and space, therefore, make up the pitch; but this Fig. 85 shows an enlarged section of the thread. In refers only to single-threaded screws. We shall refer to drawing the V we may either draw a a' inclined to the this point shortly. The curves for the elevation of the axis at $62 \frac{1}{2}^{\circ}\left(90^{\circ}-\frac{60}{9}\right)$ by setting off the angle by meansscrew, fig. 87, are projected in a manner similar to that of of a protractor from a horizontal line, as the axis, or bythe preceding examples, as shown' by the construction placing the protractor at a, perpendicular to the axis, and lines; the only difference is in the form of the thread, marking off a line $a a^{\prime}$ inclined to ae at $27 \frac{1}{2}^{\circ}$ ($\frac{1}{2}$ of 55°, there being two parallel curves for the top and two for athe being drawn in a similar manner. Having determined the bottom of the thread in square-threaded screws. At by the dotter the top and bottom of the thread, as shown in the dotted lines on the left-hand of fig. 84, the remainng curves may be drawn by means of templates, consisting templates for the curves $a^{\prime} a^{\prime}$ 'aa, to. do., fig. 84, are shown in Csplates for the curves $a^{\prime} a^{\prime}$, ca, de., fig. 84, are shown in
islat $84 a, 84 b$. It is much better to make separate temprates for the different curves, than to try and make use of the ordinary moulds or curves. The thread we have dencribed is the "Whitwoorth Sorevo Thread.""

Fig. 848.
ef, fig. 87, the back half of the thread is shown in dotted lines, portions of which, $f g$, eh, are in full where they cross the space. It will be noticed the dotted cuaves are inelined in the opposite direction to those shown in full.
41. As previously stated, Art. 28 , page 29 , the bearings of screws are nuts which fit the former accurately. Figs. 88, 89, represent in half-plan and sectional elevation a nut for the screw shown in figs. 86,87 . The curves are exactly amilar: to those of the screw, and in the half shown in fig. 89, they are inclined in the same direction as the dotted curves eff, fig. 87 ; in the half of the nut removed they are in the opposite direotion.
The construction lines show how fig. 89 is drawn. Fig. 90 is a section of the threads of the screw and nut, showing them in contact.
42. In figs. 83, 84, and 86, 87, we have shown how to draw the true form of the threads of screws, V and square-threeded ; however, in most instances, approrimaIn tig. 84 we have shown the threed of the screw with tions to the true form are employed, and, generally, the angular top and bottom; this, however, is not quitesmaller the scale of the drawing the further the approxiCorrect, but for convenience in drawing we may ascume it mations are carried. Figs. 91, 92, Plate VIII., represent depth so. The Whitworth sarew throed has of of the the V-threaded screw shown in figs. 83, 84, drawn to a depth rounded off at the top and bottom, as shown inncale of $\frac{1}{8}$; the curved lines $a a, a^{\prime} a^{a}$ are here replaced by
Gg. 85 .

Fig. 86. straight lines. Fig. 94 is drawn to a scale of $\frac{1}{4}$, the Vs not being shown. In smaller scale drawings lines are used to represent the tops of the threads only, as at e, d, fig. 70. Figs. 95, 96 representa right-handed double equar-threaded serevo, $2 \frac{1}{2}^{\prime \prime}$ diameter, $1^{\prime \prime}$ pitch, scale $\frac{1}{2}$. The curved lines are replaced by straight ones. As there are two independent threads on this screw, the sectione of the thread and space will be squares whose sidee $=\frac{1}{2}$ the pitch. If there were three threads on the macrew, then the squarea would have sides of f the pitch.
Inteoducod by Mr. Joweph Whitworth of Mmohenter, now Jomph Whitworth, Barto

