EVALUATION OF THE VERIFICATION PROCEDURE

1. Materials

Rhine river water samples were collected from the Lek at Bergambacht and analysed by the Dune Water Works of the Hague. The Meuse river was sampled at Keizerzveer and enalysed by the Drinking Water Works of Rotterdam. The samples were stored in a refrigerating room. The chemical analyses of the water samples are listed in Table 1.

Table 1 Chemical analyses of Rhine and Meuse river samples								
		23-2-176						
chloride	(mg/l)	230	175	169	83	140	196	37
sulphate	11	89	86	85	59	70	94	54
bicarbonate		140	146	156	146	149	193	134
nitrate	11	11.5	10.8	12.2	14.0	12.7	17.6	17.0
Kjeldahl nitrogen	11	4.4	1.7	2.2	1.5	1.0	2.6	1.9
orthophosphate		0.62	0.55	0.75	0.41	0.98	0.97	0.73
unfiltered	. 11	1.95	1.27	1.70	1.10	1.61	1.92	1.4
total organic carbo	on "	6.2	7.8	5.9	8.0	5.5	8.2	6.9
silt	n	64	10	19	46	33	23	26
cholinesterase inhibition in								
parathion eq.	$(y_g/1)$	0.17	0.25	0.24	0.04	0.08	0.13	-
Н		7.55	7.60	7.50	7.65	7.70	7.50	7.6
/ilow	(m²/sec)	2572*	1648*	2870*	3497*	1964*	1329*	350**

* Lobith.

** Lith.

For each experiment new glassware was used to preclude cross-contamination.

 32 P-labelled methylphosphonic acid (specific activity 1 mCi/g) and 32 P-labelled VX (specific activity 20 mCi/g) as well as the corresponding unlabelled compounds were synthesized in this laboratory. Diazomethane was prepared and used in diethyl ether solution⁽⁷⁾.

2.2. Hydrolysis

As stated in Chapter 1 gas chromatography in combination with a specific phosphorus detection is a suitable technique for the tracing of nerve agents in water at very low concentrations. To make the gas chromatographic picture as simple as possible (section 2.6) a complete hydrolysis should be carried out after which most