operation is performed in a dark place. light is aho evolven. All sorts of imaginary catuses have been assigned to account for these phenomena. They are referable, however, to a very simple and universal law. All substances during their change from a gaseous to a liquid, or from a liquid to a solill state, crolve heat. and vice versa. The intense cold produced by liquiand rice versa. The intense cold produced by liguifying ice or gnone hy udmixture with salt, is a familiar instance of the latter; and the hent evolred in solidifyiug carbonic acid under intense cold and pressure, is sometimes dangerous evidence of the former-the expansion of nir consequent on the sudden liberation of heat from the carbonic acid in the moment of congrlation, not unfrequently shattering the vessel to ntoms.
Lime in alaking will absorb one-fourth its weight in water; but the slaked lime is not more moist than chemically combined winh the lime, and becomes solidified ; and it is simply owing to this solidification of the water that heat is evolved.
Caustic lime has astrong allinity for mater and carbonic acid. When kept in a dry place it gradually slakes, cracking, splitting and crumbling to ally slakes, cracking, splitting and crumbling to powder with the erolution of heat- Which, however, is not so perceptible on account of the length of time
during which the process is extended- just as though during which the process is extended-just as though
it hau been slaked by pouring on water. In this case it had been slaked by pouring on water. In this case
the lime has obtained the trenty-five per cent. of the lime has obtained the twenty-five per cent. of
vater it needs to slake it from the atunosphere. There water it beeds to slake it from the atinosphere. There
is this difference, howerer, between air-slaked lime and that which is water-slabed. The forner is slaked precisely as the latter by water, bat it also absorbs car?onic acid from the nir, and insteall of being sumply a hydrate of lime, as when water-slaned, it is a definite compound of hydrate and carbonate of lime, $42 \cdot 6$ per cent. of the former, and $57 \cdot \frac{1}{6}$ of the lattor. Air-slaked lime, therefore, is far from being so canstic as water-slaked lime-upwards of one-half of it being reconrerted into the sano chemical state as it being reconrerted into
After the lime has absorbed sufficient rater and is completely fallen to pieces, carbonic acid is absorbed much less rapidly, especially in damp situations. In fuct, though there is a constant tendency in line to return to the state of carbonate in which it existed previous to burning, yet, by mere exposure to the air it does not attain this state in any assignable time. In some walls six hundred years old, the lime has been found to bare absorbed only one-fourth of the carbonic acid necessary to convert the whole into carbonate : in others, luilt by the Romans cighteen hundred years ago. the proportion absorbed has nut exceeded three.fourths of the quantity contained in natural limestonc.
When slaked in the ordinary way, lev the application of water, lime falls to pieces withe .. de absorbtion of water. lime falls to pieces withe
tion of but dittle, if any, carbonic acid. Bat when tion of but jittle, if any, carbonic acid. Bat when
slaked and exposed to the nir, the absorition of carslaked and exposed to the nir, the absorlotion of car-
bonic acid is at dirst very rapid, but it gradually bonic acid is at first very rapid, but it gradually
beconcs very slow, and probally the same definite becones very slow, and probally the same definite
compound of hydrato and carbonate of lime is formed as in the case of air-slaked lime.
The original limestone, or any other form or carbonate of lime, then, is perfeclly mild. IBy driving of the carbonic acia by heat, we get lime which is very canstic. By slaking this with water, we get a less caustic substance-hydrate of lime. By allowing it to alr-shat, we get a still less causuc com-ponnd-a definite compound of hydrate amd carbonate length of time, we ultimately get the whole reconlenglt of time, re ultimately get the whole recon-
verted into its original midd form-carbonate of lime.
verted into its original mild form-cartonate of lime.
The commonly received notion that air-slaked lime is stronger than water-slaked time, is an error. It is, in fuct, not so strong.-Rural Annual

Save the Leaves.

Tmer hare a double value. First, iu their natural state, as the best of all mulches. There is no protection against frost, and the effect of winter sumshine, to compare with forest leaves. In the woods they eflectually protect tender plants and fowers, which die when subjected to the exposure of the gardenThere is no better covering for strawberry beds and choice plants; and, for this purpose, a little brush is necied to keep them from blowing array. Seconells, leares are a most valuable manure when accomposed. Leaf mould is considered by gardeners one of their most powerful firtilizers. In the compost-heap, the harn yard, the stable, and the pig-stye, they should be freely used. A pile of dry, clean traves is an excellent resource for bedding anima!s during the late full and winter it greatly promutes the comfort of the animals, and adds not a little to the realth of the dung heap.

Stovel's Self-Rogulating Snow Gate.

Tas: above is an engraving of a self-regulating gate designed especially as a convenient and safe arrangement for the scason of deep snow, when ardinary gates get blocked up, and ar ${ }^{\circ}$ very troublesome. It was invented and patented by E. \& S. Stovel of Mount Forest, County of Grey, from whom the right of manufacture and use can be oltained, on terms set forth in their adrerlisement, which appears on the last page of our present issuc.

mescription of alte.

A. Hecl Post on hinge, upon which the gate swings, and in which there is a slot orgroove for the balance seight B to work in.
B. Balance weight helping the uprard morement of the gate by being fastened to the cords D to the inner frame of the gate G, thereby allowing it to be moved up or down casily.
C. Top rail of the gate, on the under side of which the cords run, and pass orer the pullies E at each end of it.
D. Cords, one ced of which are fastened to the in ner frame, and the other end to the balance weight. F. Outer frame, or body of the gate, forming a box or case for the inner to slide "up or down as required" in.
II. A spring formed of a bent piece of wood, each end of which is attached to the end of a small roi rumuing alons one of the rails of the inner frame of the gate, ame going into noteles in the outer frame so hecping the inter frame at any requred height from the ground. By grasping the spring in font hand it draws the rods out of the noiches, and so al lows the gate to move up or down as reguired.
The advantages of this gate, as claimed by the inventors and patentees, are as follows :-

1. It is a strong, durable gate, that will mork with or without snow.
2. Any farmer can make it bimself.
3. It can be made cleaper than any other gate of the kind yet invented. The gate car be made for from $\$ 2$ to $\$ 3$, as there is no iron worl: required about
4. It will work equally well in winter, with two or even three fert of snow on the gronnd, as in the midule of summer, and will set as clow to the snow as to the ground.
5. For side and back gates for farmers, it can be made without the cords and weight, as the inner frame can be raised by hand, it not beag more than about 25 lbs. reight.

Cost of Steam Ploughing.

At the dinner of the Watlington Society, Mr. Taylor begged premission to say a feer srords as to the cost of working a steam plough. He had taken sol ic little trouble to ascertain the actual cost of working the matter. He had no rish either to understate or orerstate the cost. It was a very expensivo implement, costing with its tackle about $£ 1.000$. It was one of Forler's; and haring had it in operation between tro and three jears, ho could now state pretty aceurately what was the actual cost. He could
scarcely hare done this the first fear ; for he would inll them candidly that its working the first year was by no means satisfactory, there being so many breakages and ifterruptions, principaly froun the gross rarelessness of the persons in clarge of it ; so that the expense was rery great. Hu was glad to say tory; the breaknges were very few, and the work done was rery much greater than in prorious years Ile would just give the details. Me frst of all calculated interegt on first cost at 5 per cent; then put down for wear and tear 10 per cent-making 15 per
cent upon $£ 700$; for he did not take the Fhole $£ 2,000$.
the engine being emploged three-tenths of its time in threwhing, chalf cutting, sawing, griuding. \&c., and therctore it was fair to reckon only arven-tenths. Fifteen per cent. on $\mathrm{fi00}$ came to dioj a year. That divided by a 100, the arerage number of days it worked in the year. gave about 22s. a dis for repairs of engine and tackle he pat dnvin is. Ad a day ; for coal, oil, and tallor, 15s. Gd.; wages 11 s. ; and water cart, 7s., making a total expence por day of $\mathcal{S} 3$ 2s. 10d. The daily average number of acres of $\mathcal{C 3} 2 \mathrm{~s} .10 \mathrm{~d}$. The dails arerage number of acres rloughed had been eight, and tho rost had therefore
. " 7_{r}. lod. per anre. Now he thonght those whin bnew rhat sort of land it was would know very well that it could not be plougled with horses in an avorage season for anything like the same sum. In fact, when te commenced farming ho wanted more phoughing than he conld manage with his own horsea, and therefore applied to n neighbsuring farmer for the use of some of his. The iarmer at first consented
to plough for him at 12 s . per a 2 re, but he very soon gave it up, and said he coald not do it under 1.4s., and that he could better aford to have his horses remain idle than take less. Thus, as ploughing on stroug land cost 7s. 10d. an acre, and horse ploughing 12s., there was difference in favour of the former of 4s. 2d. Ile thought that was a fai statement of the case.-IUrmers' Mayazine.

Trexcmaso Land.-We hat a piece of garden soil turned up to trice the depth of the spade thisspring, and planted tiece of around ant corn. Mongside was another piece of ground not trenched, and planted with corn at the rame time. The corn on the first piece of ground grew luxuriantly through six weeks of droulh, rearhing ten feet in height, and the ears setting very thickily; while the other patels of corn, thoughl highly manured. has not grown more than from five to seven feet in height, and is poorly furmished with ears. Would it not pay at this rate to trench the whole garden, and bring the rich subsoil, now hardened by long cultivation, to tho ton? We commend this example to all who donbt the benefits, pecuniary and otherwise, of deep ploughing and subsoiling.
Lise of Potato Tors.- While talking abont potatoes, it may not be amiss to give a suggestion made by a friend the other day riditg along the rowl, in mended the use to be made or the tops. He recommould to place them aromnd apple trees, where hey wards as they decay, as a fertilizer. We have mentioned this experiment and thank well of this use to be made of them. We know hy actual analysis, that the potato vine contains a darge percentage of potash and this ingredient alone may be, and undoubtedy is, valuable as a fertilizer for all trees, inasmuch as the rood must be inade up in part of this alkali. It is an experiment casily tried. and we hope that the lint may be acied upon and the results on the trees be carcfilly noted and reported.--M Ilaine Farmer.
The: Mor Cuor in Evglusb.-According to the following extract from the N. Y. Ford, the hop har vest in England has come considerably slort the past scason :-"The accounts from England, Which now extend to very nearly the closing hours of tha hareest, point to a deficienç of at loast 46,000 bales, which is likely to reach 45,000 -and may possibly extend to even 50,000 bales. The letter of our English correspondent is rery full and satisfactory as to the condition of the crop at the moment of writing. It must alwass be borne in mind in considering estimates made after the crop hus matured, that the estimate represents the maximum, and that, with a plant so excecdingly liable to discase and disaster as the hop, the probability of a variation from week to week is rery great, and that this rariation must avays be in a descending scale."
Porato Jemses.-If the potato-loring people ot Nere England erer had occasion to hold a potato jubilee, they hare now. During the severity of the drouth in Jupe and part of July, it scemed that the potato crop rould never grow agsin, and it was tho gencral opininn that what had been planted would not be worth digging. The rains which came so providentially. and follorred so timely all along until now. began 10 revire thm, and they pushed alosg in donble quick time-the tops flourishing and the tubers swelling-and now, at digging-time, every one is astonished at the size, fair appearance, nam excellent quality of them it scems like old times to roll out such nohle and sound potatocs as aro found in almost every field. We have not seen or heard of a rotten one in all our valks. The drouth probably, used that disease up, and good bye to it It is thonght by some that there will be a million more bushels dug in Maine this fall than there was last fear. Wo do not know how it will be, but this is certain, what lave been dug thus far are of the best aualitr.-Dfaine Farmer

