THE

 CANADIANTORONTO, ONT., FEBRUARY, 1894

leverage in mechanics

0F. of the strangest hallucinations in this era of adivanced throught in mechanics, as in all o:her branches of practical scuence, writes Mr. R. James Abernathey, in the Ainerican Miiler, is that which clings in leverage as a factor of faciltating work in shops, mills and factories. The attention of the writer has been very forcibly called to this delusion, this relic of past ignor. ance, this shadow of a darkened period that should be left to obliv on and be forgotten, bva recent controversy with another writer. The writer clanned that if one man, by catching hold of the rim of a 36 inch wheel, could revolve the reel or set of reels with which it was connected, seven or eight tumes a minute, it would require sixteer men to revolve the same reels at the same speed provided a wheel 214 inches in diameter were used instead of the 36 -inch wheel. The ignorance of mechanical lore displayed in this statement is so apparent that we gaze upon it in bewildered astonishment, and wonder how it could have been penned by any writer of to-das, whether of high or low degree.

It is true that but few writers would now make such an awkward blunder as that. That assertion, in connectoon with many others less transparent, but equally erroneous, makes it certain that this heresy is still fondly cherished by very many that have so far been totally unable to enturely forget the traditions of the Dast and rise to the level of a nineteenth century range of thought. The delusion arises from the oft repeated observation and perhaps experiment of performing work with a lever in the hands of an individual, that could not be performed by the direct application of muscular strength. Those, howerer, that base thell calculat:ons upon such performances or observations must not forget that in all such tests, tune is totally ignored, while in all mechanical work time is a dominant factor that is not and cannot be ignored.

A single glance at a wheel of any descuption ought to convince the most thoughtless that there is no such factor as leverage in mechanics. A w'isel is a simple lever with the fulcrum in the centie. Fiery manknows that if he takes a lever and places a fulcrum under the middle of tt, making both arms the same length, that he can rase no more weight with it than he can by a direct application of his strength. It is balanced work equals strength and strength equals work as we may want to make the comparison. That is all there is to the "leverage" of a wheel, and all that can possibly be made of t .
" Oh," but says the leierage crank, " while it is true there is nothing pained in leverage by the use of a single wheel, much is gained by combining wheels, as in that way we can increase the length of the $\operatorname{long}_{\mathrm{K}}$ arm of the lever at will, and decrease the length of the short arim in proportion. By so doing we obtain unlumited advantage by leverage." Yes, so perpetual motion idiots have always thought, and presumably always w:ll think as they follow each other in the paths of darkness and destruction.
But to illustrate. Years ago, when the writer was an apprentice, the question of leverage in mechanics came up now and then. The question came up more frequently then than now, because we were less enlightened then for discussion. On one occasion we were engaged in the construction of a wooden overshot water wheel, around one of the rims of which we were putting an iron se!:ment rim, with teeth to gear into a pinion for driving the machinery of the mill. I had been thinking the leverage question over in reference to that wheel, and finally evolved a problem with which I intended to overwhelm the boss. On the first proper occasion I put it at him something after this fashion: "Now, then, Mr. K., you say that there is no mechanical gains in leverage.

I want to ask you if, instead of putung a segiment rim on the outside of the rim water wheel, which is about is feet in diameter, we would put a master w^{\prime} sel or the water wheel shaft 9 feet in diameter, if we could not gain two to one by leverage and exert double the force on the pua,o,?" "That is very true," he replied, "but in so dong we would reduce the speed of the machine, say just one-half." That reply knocked me out. I had revolved the yuestion, as I had thought, from every point of view, but strangely enough, had not thought of that phase of it. It was natural enough and plain enough when my attention was ralled to it, and I saw plainly that instead of cornering the boss he had cornered tne.
"But to further illustrate," he sand, " we will assume that this is a 40 -horse power water wheel, and we are going to use it for ralsions, a weight of 33,000 pounds $\ddagger 0$ feet high per minute. The raising of 33,000 pounds one foot high per munute, youknow, equals one-horse power, as we are now constructing the whee! and arranging the machinery. But, as sadd, if we substitute a 9 .foot master wheel for the segment rim we reduce the speed of the machinery just one half, and can therefore lift the weight but 20 feet high per minute instead of 40 , as now intended. To raise 33,000 pounds 20 feet high per minute requires but 20 -horse power, which is but half the working strength of the wheel. We can therefore raise the weight 66,000 pounds 20 feet high per min:te, which just equals 33,000 pounds $\downarrow 0$ feet high per minute So you see there is nothing gamed in actual work by your supposed gain in leverage. It is a stand off. Nothing ever has and nothing ever will be gained in that way."
I was convinced, and from that tume until now have never been guilty of advocaling "leverage" as a factor in facilitating mechanical work. It can't do t , as the above sample lesson plainly illustrates. Foolish, indeed, is the man that clings to the fatal delusion, more especially if he attempts to utilize it, as many have done in wild perpetual motion schemes.

CONTRIVANCE FJR STOPPING AN ENGINE.

A ${ }^{N}$ ingenous contrivance for stopping an engine in a machine shop occupies tot more than a cubic foot of space, and consists of an electro-maguet, a system of small levers and a cylindrical chamber at right angles to the steatn supply pipe, this chamber containing two connected walses one thick and the other thin. When the steam is shut off the thocker valve lies across the main supply pipe: but when the steam is on, the two valies lie in the cylinder on enther side of the upper pipe; when in this position the values fit loosely enough into the cylinder to allow a strong pressure of steam on all sides of them. The motive power of the mechanism is furnished by two small electro-magnet spools, through which a current is sent by pressing the button in any part of the shop, this attracting to the magnets a small bat of steel which is fastened at one end of an angular lever; at the end of the lever's other arm, which runs horizontally, and on its under side, is a small notch, into which, when the machine is ready for action, fits the end of a vertical lever, to which is fastened a valve lever, hanging by the perpendicular, and so arranged that when it falls the iwo levers separate. The action of the maknet raises the end of the horizontal arm of the ankular lever and loosens the sinaller vertical lever, so that the wetgit of the valve swings it down in a semicircle, thus hitiong a cam and tripping a valve. This exhausts the steam outside of the smaller value in the cylinder, and the steam beyond the other drives it across the supply pipe with great force, shutting off the steam from the engine within fifteen or twenty seconds.

the invention of the match.

HISTORI does not gise to any one man the credit of inventug the match. That useful article reached its present state of perfection by a lonk series of inventons of various degrees of merit, the most important of which resulted from the progress of chemical science. Starting from the tuder-bon and fy rutan of the badons. the first attempt to improse on the old sulphur match was made in 1 Kog by Chancel, a trench cheminst, who upped cedar splents with a paste of alorate of potash and sugar. On dipping one of the me matches into a bittle bottle containing asbestor wetted with sulphume acid, and withdrawing it, it burst into fiame. This contruance was introducedi into England after the batte of Waterloo, and was sold at a high price, under the name of Prometheans. Some tme after a man named Heurtner opened a shop in Ioondon. It was named the Lughthouse, and he added the inscription to the mural literature of London

An open bov, contaming fifty matches, and the sulphuric acid asbestos bottle were sold for a shilling. It had a large sale, and was known in the kitchen as the Hugh l'erry. Heurtner brought out "vesuvians," conststing of a cartridge contaming chlorate of potash and sugar and a glass bead fult of sulphuric acid. On pressing the end with a pair of nupers, the bead was crushed and the paste burst into Hame This contmance was afterward more fully and usefully employed for firing kunpouder in the railwas fog-signal. The next was Walker. He nas a drughist at Stockton-on-Tees, and in 1827 produced what is called "congreves," never making use of the word " Lucifer," which was not yet applied to matches. His splints of potash paste, il which gum was substituted for sugar, and there was added a small quantity of sulphide of anumony. The match was innuted by being drawn throush a fold of adndpaper, with pessure ; but It often happened that the tupped patt was torn off without igniting, or, if ixmited, it sometmes scattered balls of fire about. These mat hes were held to be so dangerous that they were prohbited be law in Finnce and dermany. The first grand impootment in the manufacture took plate in $1 \mathrm{~S}_{3} 3$, by the mitroductoon of phosphor, is into the pacte, and this seems to hate sug. gested the word "lucfer, whin the mathch has ever sunce retaned. When phospharus was first monroduced to the match-makers, its price was $\$ 21$ per pound. hut the demand for it soon berame so great that it had to be manufactured by the on, and the priee quikly fell to $\$ 1.25$ per pound Many inventors then enered the field, and mathes were sent in shiploads to all parts of the world.

FLour milling in brazil.

THF: London Miller saj; "A brighter day seems to have dawned for the Kod de Janeiro Flour Millsand Girmanies lamted. The directors' report for the year ending August 31, 1893, shows a net profit of $\lambda 10,0,0 ;$ 2s. gi., which, it appears, will suffice to pay a dovidend of 7 s . per share, and leave a balance of $2.1 .315 \mathrm{2s}$. xd . to carry forward in the new account. Surh a result is the more satisfactory, seeing that the internal cond toon of Brazil has not been during the past twelve months evactly favorable to the operations of trade. It is not surprising to hear that since tle date at whith the accounts were inade up, that is to say, the close of August last, 'the working of the mill has been greatly interficed with by the disturbed state of Rio de janemo. but it is well to know that the mill and us belongings have hitherto taken no senous harm, and that the staff are reported safe and sound. Even wars alarins canart exinguish man's craving for food.'

