V. If the 1st of March be called the first day of the year, shew that if the pth day of the gth month be the nth day of the year,

$$n = 30q - 1 + p + r$$

where r is the greatest integer in $\frac{59+4}{12}$.

VI. If p, q, and r be three consecutive primes to 3, prove that

$$p(p-2q)-r(r-2q)=\pm 3,$$

the upper or lower sign being taken according as q exceeds p by 2 or 1.

VII. If
$$\frac{1}{1-2rx+x_0} \equiv 1 + b_1 x + b_2 x^2 + ...$$

$$\delta_n x^n + \dots \text{prove that } \delta_{n+1} \delta_{n-2} = \delta_n^2 - 1.$$

VIII. Show that the sum of the series, n+1 n+1

$$\frac{|n-r-\rho|}{|r-r-\rho+1|} \frac{|r+\rho+1|}{|r-r-\rho+1|} \frac{|r+\rho+\dots}{|r+\rho+1|} \cdots + \frac{|r-r-\rho+1|}{|r-r-\rho+s|} \frac{|r+\rho+1|}{|r+\rho+1|} \frac{|r-r-\rho+1|}{|r-r-\rho+1|} \cdots = \frac{|n+r+1|}{|r+\rho+1|} \frac{|r-r-\rho+1|}{|r+\rho+1|} \cdots$$

IX. Solve the equation (x-3) (x-9) (x-11) (x-17).

$$=(x-8) (x-14) (x-16) (x-22).$$
X. $x + y + z = 11$
 $xy + yz + zx = 36$
 $yz = 3x (z-y).$

One solution is x=2, y=3, z=6; find all the other solutions.

11. Prove that $\sin 60^\circ = 4 \sin 20^\circ \sin 40^\circ$ $\sin 80^\circ$.

XII. Eliminate θ between the equations.

$$m = \csc \theta - \sin \theta$$

 $n = \sec \theta \cos \theta$.

XIII. In any triangle, prove that

$$\tan^2\frac{A}{2} + \tan^2\frac{B}{2} + \tan^2\frac{C}{2}$$

$$= \frac{1}{3} \left\{ \left(\frac{a}{\sin A} \right)^2 + \left(\frac{b}{\sin B} \right)^2 + \left(\frac{c}{\sin C} \right)^2 \right\}$$

$$\left\{ \left(\frac{\sin^{\frac{A}{2}}}{\frac{a}{2}} \right)^{2} \cdot \left(\frac{\sin^{\frac{A}{2}}}{\frac{b}{2}} \right)^{2} + \left(\frac{\sin^{\frac{A}{2}}}{\frac{c}{2}} \right)^{2} \right\}^{1}$$

XIV. The circumference of a circle whose radius is a is divided into n points, each of which subtends the same angle at a point O within the circle. If CO = b and $r_1, r_2, \ldots r_n$, be the lines from O to the points of division, shew that

$$r_1 + r_2 + \dots + r_n = (a^2 - b^2)$$

$$\left(\frac{1}{r_1} + \frac{1}{r_1} + \dots + \frac{1}{r_n}\right)$$

XV. A circle is inscribed in a triangle, and a second triangle is formed whose sides are equal to the distance of the points of contact from the angles of the triangle; if r be the ractius of the circle inscribed in the first triangle, and p, p^3 , the radii of the inscribed and circumscribed circles of the second triangle, then will $\frac{1}{4} r^2 = pp^3$.

6. The squares of the tangents from any point to a parabola are to one another as the focal distances of the points of contact.

17. S and H are for; and C the centre of an ellipse. SM, HN are perpendiculars on the normal at P; prove that $CM = CN = \frac{1}{4}$ $(SP \sim HP)$.

Also, find the polar equation to the locus of N.

18. A triangle is escribed about a parabola; prove that the area of the triangle whose vertices are the points of contact is double that of the escribed triangle.

19. The equation of a circle in which (x_1, y_1) , (x_2, y_2) are ends of the chord of a segment containing an angle θ , is

$$(x-x_1) (x-x_2) + (y-y_1) (y-y_2)$$

$$\pm \cot \theta \left\{ (x-x_1)(y-y_2) - (x-x_2)(y-y_1) \right\} = 0.$$

20. A parallelogram is described about an ellipse; if two of its angular points lie on the directrices, the other two lie on its auxiliary circle.