BRIEF TREATISE ON TRIGONOMETRY

the gnomon and its shadow, is measured out uniformly. OH, making the angle $BOH - \theta$, is the edge of the shadow upon the dial. Then, $BH - GB \tan h = OB \tan \theta$. And $GB/OB = \sin \varphi$, whence $\tan \theta = \sin \varphi \tan h$.

Hence setting off h=I hr. II hrs. III hrs., etc., we can lay off the corresponding values of θ , and thus form the hour lines on the dial.

17. Given φ , construct θ for various values of h.

-18. Lay off the hour lines of a dial for lat. 44° N.

19. ABC represents the earth and M the moon. The moon is observed from A and from B. $LAOB = \gamma$, $OAM = \alpha$, $OBM = \beta$, to find OM.

The whole angle m+n does not exceed 30' or 40', and m-n is not more than 10' or so. Hence $\cos \frac{1}{2}$ (m-n) is practically unity. On this supposition prove that

 $x = OM = r \sin \frac{1}{2} (\alpha + \beta) \cos \frac{1}{2} (\alpha - \beta) / \sin \frac{1}{2} (\alpha + \beta + \gamma).$ 20. If in Ex. 19, $\alpha = 145^{\circ}$, $\beta = 164^{\circ}$ 12' and $\gamma = 50^{\circ}$.

Show that x = 60.58 r.

This means that the moon's distance from the centre of the earth is a little more than 60 radii of the earth. 21. S represents the sun, E the earth, and V the planet Venus. bb' is the path of Venus as seen from B and aa' as seen from A. The $\angle DBC = \alpha$ is measured by observation. Denote BDA by 2p, and DVC by θ ,