$r_{1}=\frac{1}{m}\left(y+\Delta_{1}{ }^{\frac{1}{m}}+{c_{1}}_{1} \Delta_{1} \stackrel{2}{\ddot{r}_{1}}+b_{1} \Delta_{1}^{\frac{3}{m}}+\ldots+c_{1} \Delta_{1} \stackrel{\frac{m-2}{m}}{ }+{l_{1} \Delta_{1}}_{\frac{m-1}{m}}^{)}\right) ;$
where $g$ is rational, and $a_{1}, b_{1}$, etc., involve only surds subordinate to $\Delta_{1}{ }^{\frac{1}{m}} . \quad \$ 38,47$.
7. The equation $F(x)=0$ Las an auxiliary equation of the $(m-1)^{\text {th }}$ degree. $\varsigma 35,52$.
S. If the roots of the auxiliary be $\Delta_{1}, \delta_{2}, \delta_{8}, \ldots, \delta_{m-1}$, the $m-1$ expressions in each of the groups

$$
\begin{aligned}
& \Delta_{1}^{\frac{1}{m}} \frac{1}{\delta_{m-1}^{m}}, \quad \frac{1}{\delta_{2}^{m}} \frac{1}{\delta_{m-2}^{m}}, \ldots, \delta_{m-1}^{\frac{1}{m}} \Delta_{1}^{\frac{1}{m}}, \\
& \Delta_{1}^{\frac{2}{m}} \frac{1}{\delta_{m-2}^{m}}, \quad \delta_{2}^{\frac{2}{m}} \frac{1}{\delta_{m-4}^{m}}, \ldots \ldots, \delta_{m-1}^{\frac{2}{m}} \frac{1}{\delta_{2}^{m}}, \\
& \Delta_{1}^{\frac{3}{m}} \frac{1}{\delta_{m-3}^{m}}, \quad \frac{3}{i_{2}^{m}} \frac{1}{\delta_{m-6}^{m}}, \ldots, \quad \delta_{m-1}^{\frac{3}{m}} \frac{1}{\delta_{3}^{m}},
\end{aligned}
$$

and so on, are the roots of a rational equation of the $(m-1)^{\text {th }}$ degree. The $\frac{m-1}{2}$ terms

$$
\Delta_{1}^{\frac{1}{m}} \frac{1}{\delta_{m-1}^{m}}, \quad \frac{1}{\delta_{2}^{m}} \frac{1}{\delta_{m-2}^{m}}, \ldots, \delta_{\frac{m-1}{2}}^{\frac{1}{n}} \frac{1}{\delta_{m+1}^{2}}
$$

are the roots of a rational equation of the $\left(\frac{m-1}{2}\right)^{\text {th }}$ degree. $539,44,55$.
9. Wider generalization. $\S 45,57$.
10. When the equation $P(x)=0$ is of the first class, the auxiliary equation of the $(m-1)^{\text {th }}$ degree is irreducible. $\$ 35$. Also the roots of the auxiliary are rational functions of the primitive $m^{\text {th }}$ root of unity. §36. And, in the particular case when the equation $F(x)=0$ is the reducing Gaussian equation of the $m^{\text {th }}$ degree to the equation $x^{n}-1=0$, each of the $\frac{m-1}{2}$ expressions,

$$
\Delta_{1}^{\frac{1}{m}} \frac{1}{\delta_{m-1}^{m}}, \delta_{2}^{\frac{1}{m}} \frac{1}{\delta_{m-2}^{m}}, d \mathrm{c}
$$

has the rational value $n$. $\$ 11$. Numerical verification. $\$ 42$.

