J. S. PLASKETT

diameter of the image increases nearly in pre-ortion with the focal length, and therefore approximately, as the ratio of aperture to focal length does not vary much in large instruments, with the diameter of the object-glass. Consequently, the lifective value of increase of aperture is not proportional to the increase of area, but more nearly to the increase of diameter, which was accordingly used in the comparison. So far as regards the relative dispersion of different instruments, the exposure time was taken as directly proportional to the linear dispersion, presuming the same height of spectrum in each case. No account was taken of the difference in the loss due to absorption and reflection in the prism-train, although this may be quite important in some cases. The exposure time required was taken as inversely proportional to the slit-width, and this, as one of the experiments detailed above shows, is probably nearly in accordance with the facts. In the following Table V, data of the various equipments which are and have been used ~ radial velocity work, so far as they were available to the writer, appear, but these data are incomplete and may in some cases be in error, although probably not to a marked degree.

1 quipment	Diameter of Ob Jettive, inches	Ratio of Diameters	katio of Areas	Linear Dispersion. mm per Tenth Meier	Slit Width, n.m.	Theoretical 1.xpo- sure	Actual Exposure Required		
							B Ophi- whi	y Aqui- lae	a Boötis
Ottawa	15	1	1	18.0	0.025	ī	50m	60m	óm
Yerkes	.10	2.67	7 1	10.8	.038	0.42	75	115	15
Lick and License	30	2.4	5 76	12 5	025	0.62	25 ?	25 2	42
Lowell	21	1.0	2 56	11.4	025	I 02	120	120	20 ?
Newall	25	1.07	2.78	14-0	.025	0 70	70	75	15
Bonn	1.2	0.8	0 (1)	15.2	020	TOT	75	75	15
Pulkowa	30	2 0	4.0	130	. 020	0.80	05 ?	05	15
Lord	$1.2\frac{1}{2}$	0.83	0 (н)	18-6	025	1 20	60 ?	60 ?	4

TABLE V Comparison of Efficiencies of Installations

The above comparison shows that the Lick, Bonn, and Lord equipments *in practice* approach more nearly the theoretical efficiency than the Ottawa, but the Yerkes, Lowell, Newall, and Pulkowa depart farther from it.

210