128 SYNOPSES OF LABORATORY COURSES

2. Folin's microchemical method.—Use the apparatus provided.

Into the test tube measure I to 5 c.c. of urine, so that 0.75 to I.5 mgms. of ammonia-nitrogen are dealt with. For normal urine, 2 c.c. are usually about right. With diabetic urine, even I c.c. may be too much, and the urine must be previously diluted.

Add water, if necessary, to bring the volume to about 5 c.c. Add 3 c.c. of a saturated solution of potassium hydroxide, also a few drops of kerosene or heavy, crude machine oil (to prevent foaming).

Measure 2 c.c. of decinormal hydrochloric acid into the 100 c.c. graduated flask, add about 20 c.c. of distilled water, connect up the apparatus, and pass a strong current of air through for 30 minutes. Nesslerise as described below, and compare with 1 mgm. of nitrogen obtained from the solution of standard ammonium sulphate, similarly and simultaneously Nesslerised.

Calculation.—The number of mgms. of ammonianitrogen in the volume of urine taken are readily calculated, and so the number of grammes per 100 c.c. The amount of ammonia is obtained from this by multiplying by $\frac{17}{4} = 1.214$.

Preparation of the Nesslerised Solutions.—In another 100 c.c. measuring flask place 5 c.c. of standard ammonium sulphate solution, containing 1 mgm. of nitrogen, and dilute it to 60 c.c. To each flask add 3 c.c. of a cold saturated solution of Rochelle salt (to prevent the formation of a cloud on adding Nessler's