See Todhunter's Trigonometry.

$$\frac{22}{7}r^2 \sim \left(\frac{7}{9} \cdot 4r^2 + \frac{7}{900} \cdot 4r^2\right) = \frac{r^2}{1575}.$$

8. A cistern is kept constantly supplied with water; supposing it full, it is found that 24 equal taps opened together will empty it in 5½ minutes, and 15 of them will empty it in 13 minutes. How many of them will empty it in 33 minutes?

If I represent the capacity of the cistern, the constant supply will be found to be $\frac{14}{11 \times 13}$ and the quantity of

water emptied by each pipe= $\frac{5}{3 \times 11 \times 13}$ in 1'. Therefore number of pipes =

$$\left(1 + \frac{14 \times 33}{11 \times 13}\right) \div \frac{5 \times 33}{3 \times 11 \times 13} = 11.$$

9. State the rule for finding the characteristic of the logarithm for any number.

Find the number of digits in the integral part of $30^{90} \times 5^{16} \div 2^{11}$, and the number of ciphers between the decimal point and the first significant figure of the decimal representing 3-16.

See Cherriman & Baker's Trigonometry.

$$\log \frac{3^{20} \times 5^{16}}{2^{11}} = 20 \log 3 + 15 - 26 \log 2.$$

=16715646.

... number corresponding to this logarithm has 17 digits in its integral part.

$$\log \frac{1}{3^{15}} = -7.1568195.$$

.. there are seven ciphers between the decimal point and the first significant figure.

[Logarithm of 2 and 3 should have been given for this question.]

10. (1) The base of a triangle is b, and its altitude a, required the distance from the vertex at which a parallel to the base must cut the altitude in order to bisect the triangle.

- (2) The perimeter of a right-angled triangle is b, and the radius of the inscribed circle is r; determine the sides of the triangle.
- (1) Let x be altitude of triangle to be cut off. Then since similar angles are to one another in duplicate ratio of their homologous sides

$$x^2: a^2:: \frac{ab}{4}: \frac{ab}{2}, \therefore x = \frac{a}{\sqrt{2}}.$$

(2) If c be the right angle. $c^2=a^2+b^2, rp=ab;$ $\therefore a+b=\sqrt{c^2+2rb}$ $a-b=\sqrt{c^2-rp}$, whence, etc.

ALGEBRA (THIRD CLASS).

1. If $\pi = 3.1416$, a = 5 inches, and h = 7feet II inches, find the value of $2\pi(ah+a^2)$. 2148 square feet.

2. If x=.4, find, correct to one decimal place, the value of $x^8 - 4x^6 - 2x^4 - 52x^2 + 9$.

3. If x=a+d, y=b+d, z=c+d, prove that $x^2 + y^2 + z^2 - xy + yz + zx$

$$=a^2+b^2+c^2-ab-bc-ca.$$

• Substitute the values of x, y, z on the right-hand side of the equation, and the result will follow.

4. Divide
$$a^3 + b^3 + c^3 - 3abc$$
 by $a + b + c$.

$$a^3 + b^3 + c^3 - 3abc = (a + b + c)$$

$$(a^2 + b^3 + c^3 - ab - bc - ac).$$

5. Find the factors of

(a) $15x^2 - 19xy - 10y^2$.

(b) $15(a+b)^2+14(a+b)(x+y)-8(x+y)^2$.

(c) $x^3 - x^2y - xy^2 + y^3$.

(a) $15x^2 - 19xy - 10y^2 = (5x + 2y)(3x - 5y)$.

(b)
$$15(a+b)^2 + 14(a+b)(x+y) - 8(x+y)^2 =$$

 $\{5(a+b) - 2(x+y)\} \{3(a+b) + 4(x+y)\}.$

(c)
$$x^3 - x^2y - xy^2 + y^3 = x^2(x - y) - y^2(x - y)$$

= $(x + y)(x - y)^2$.

Solve

(a)
$$(10x-11)(11+2x)+(5x-11)(11+3x) + (7x-11)(11-5x)=0.$$

(b)
$$(x-2n+1)^2-(2n-1)^2=(x-2n)^2$$
.

(a)
$$x=\frac{3}{2}$$
; (b) $x=2n^2$.