STATION.	POINT.	BRARING.	VERNIER.	CUEVE DATA.
52+40.5	P. T. C. ¹		3° 00'=1 I	
+80.5			3° 43'	
5120.5			4° 41'	
+60.5			5° 53'	
50+00.5			7° 19′	
+40.5	P. C.¹ ⊙		4° 44'	
49			3° 31′	
48			0° 31/	Vertex=48+67
* +82.7	P. C ¹ O	6° Left.	3° 00'=1 I	△=27° 28′
47+22.7			1° 55′.2	D= 6°
+62.7			1º 04'.5	I= 9°
46+02.7			0° 28'.8	T=234.44
45+42.7			0° 07'.2	S''=300
44+82.7	Offset 3.92 P. T. C. ⊙	N. 20 W.		F=0° 03'.92

Here we have taken S''=300. \therefore F=3.92, and s or x = 149.9. T¹=234.44. We divide 300 by 5, which is 60 ft. for chord length, which is reasonable length. Then as central angles are as square of distance :

Since $\triangle = 27^{\circ} 28'$ and 18° is used up for T. curve ... $9^{\circ} 28'$ remains for simple curve, which is $(9^{\circ} 28+6^{\circ}) \log_{2}=1+57.8$. (The deflections from P. C.¹ to P. T. C.¹ are taken from Table No. 2, a description of which has been omitted for want of space. It is constructed from the tangent, in series and an equation,

 $d = \frac{1}{3} \cdot \frac{1}{s''} (s^2 + s^2 + ss) - \cdots$ This table should be very valuable to the engineer. Without it we begin from the

P. T. C.¹ and ran to the P. C.¹ with the deflections first found. If we wish to simply put in the offsets and run the curve later.

we place the stakes as follows :

F. I. (point of	(1) = 48 + 67	
	$T^{1}=2+34.4$	
. • . P. C.	=46+32.0	
	+ 4+57.8	
Р. Т.	50 + 90.4	
ta 46 + 32 6 and 5	been our strate to 00 ± 00	

Then at Sts. 46+32.6 and 50+90.4 offsets are placed. $(4+57.8) = \frac{1}{2} = \frac{27^2 28'}{6^2}$.

As will be seen, it is hecter to work forward instead of from the P. T. C. and P. T. C.¹ to the circular curve.

4

* Set up transit and set to 6° for backsight. • " 4° 44' + I = 13° 44' for backsight, etc.