Statien.	Peint.	Bearing.	Vernier.	Curva Data.
$52+40.5$	P. T. C. ${ }^{\text {a }}$		$3^{\circ} 00^{\prime}=\frac{1}{\text { I }}$	
+80.5			$3^{\circ} 43^{\prime}$	
$51-+20.5$			$4^{\circ} 41^{\prime}$	
+60.5			$5^{\circ} 53^{\prime}$	
$50+00.5$			$7^{\circ} 19^{\prime}$	
- +40.5	P. C. ${ }^{+}$-		$4^{\circ} 44^{\prime}$	
49			$3^{\circ} 31^{\prime}$	
48			$0^{\circ} 31^{\prime}$	Vertex $=48+67$
* +82.7	P. $\mathrm{C}^{1} \odot$	$6^{\circ} \mathrm{Left}$.	$3^{\circ} 00^{\prime}=\frac{1}{3} 1$	$\triangle=27^{\circ} 28^{\prime}$
$47+22.7$			$1^{\circ} 55^{\prime} .2$	$\mathrm{D}=6^{\circ}$
+62.7			$1^{\circ} 04^{\prime} .5$	$\mathrm{I}=9^{\circ}$
$46+02.7$			$0^{\circ} 288^{\prime} .8$	$\mathrm{T}=234.44$
$45+42.7$	Offeet 3.90		$0^{\circ} 07^{\prime} .2$	$\mathrm{S}^{\prime \prime}=300$
$44+82.7$	P. T. C. \odot	N. 20 W.		$\mathrm{F}=0^{\circ} 03^{\prime} .92$

Here we have taken $\mathrm{S}^{\prime \prime}=300 . . \cdot \mathrm{F}=3.92$, and s or $x=149,9$. $T^{\mathbf{L}}=234.44$. We divide 300 by 5 , which is $60 \mathrm{ft}^{\text {. for chord length, }}$ which is reasonahle length. Then as central angles are as :quate of distance :

$$
\begin{aligned}
& \left(\frac{1}{5}\right)^{2} \times 9^{\circ}=21^{\circ} 06^{\prime} \quad \therefore 0^{\prime} 7^{\prime} .2=\text { deflection. } \\
& \left(\frac{2}{5}\right)^{x} \times 9^{\circ}=1^{\circ} 26.4^{\prime} \cdot \therefore 0^{\circ} 28^{\prime} .8= \\
& \left(\frac{3}{5}\right)^{2} \times 9^{\circ}=3^{\circ} 14.4^{\prime} \cdot 1^{\circ} 04^{\prime} .8= \\
& \left(\frac{4}{5}\right)^{\circ} \times 9^{\circ}=5^{\circ} 45.6 \cdot 1^{\circ} 55^{\prime} .2= \\
& \left(\frac{5}{5}\right)^{\circ} \times 9^{\circ}=9^{\circ} 00^{\prime} \quad \therefore 3^{\circ} 00^{\prime}=
\end{aligned} \quad 4 \quad=\frac{1}{3} 1 .
$$

Since $\Delta=27^{\circ} 28^{\prime}$ and 18° is used up for T. curve . $.9^{\circ} 28^{\prime}$ remains for simple eurve, which is ($9^{\circ} 28 \div 6^{\circ}$) long $=1+57.8$. (The ueflections from P. C. ${ }^{1}$ to P. T. C. ${ }^{1}$ are taken from Table No. 2, a deseription of which has been omitted for want of space. It is constructed from the tangent, in series and an equation, $d=\frac{1}{3} \cdot \frac{1}{s^{\prime \prime}}\left(s^{2}+s^{2}+s s\right)$. This tahle should be very valuable to the engineer: Without it we begin from the P. T. C. ${ }^{1}$ and run to the P. C. ${ }^{1}$ with the deflections first found.

If we wish to simply put in the offisets and run the eurve later; we place the stakes as follows :
P. I. (point of intersection) $=48+67$

$$
\begin{array}{rr}
& \begin{aligned}
T^{\prime \prime} & =2+34.4 \\
& =46+32.6 \\
\text { P. C. } & \frac{4+57.8}{50+90.4}
\end{aligned} \\
\text { P.T. } & \begin{aligned}
\end{aligned}
\end{array}
$$

Then at Sts. $46+32.6$ and $50+90.4$ offisets are placed. $(4+57.8)=$ $\frac{\Delta}{\mathrm{D}}=\frac{27^{\circ} 28^{\prime}}{6^{\circ}}$.
As will be seen, it is hecter to work forward instead of from the P. T. C. and P. T. C.' to the circular curve.

* Set up trensit and set to 8° for backsight.
*** "

