$$\frac{\partial c^{*}(\cdot)}{\partial j} = \frac{\partial c^{*}(\cdot)}{\partial E(p^{*})} \frac{\partial E(p^{*})}{\partial \theta} \frac{\partial \theta}{\partial j}$$

for $j=\gamma^2, \alpha^2$. Differentiating (3) with respect to θ yields

$$\frac{\partial E(p^*)}{\partial \theta} = \overline{p} - \frac{p}{e}$$

which vanishes if $\overline{p}=p/e$. Thus, $\partial c(\cdot)/\partial j=\partial c^*(\cdot)/\partial j=0$ which suggests that $\partial g(\cdot)/\partial \theta=0$. Therefore, $g(\cdot)$ is independent of θ and the consumer's choice problem doesn't depend on uncertainty if $\overline{p}=p/e$.

Proof of Proposition 3. From Proposition 1, it follows that $\partial g(\cdot)/\partial E(p^*)>0$. Differentiating (3) and (4) and combining expressions yields

$$\frac{\partial E(p^*)}{\partial \gamma^2} = \frac{\partial E(p^*)}{\partial \theta} \frac{\partial \theta}{\partial \gamma^2} = \left[\overline{p} - \frac{p}{e} \right] \left[-\frac{\alpha^2}{(\gamma^2)^2} \right]$$

where the second bracketed term is unambiguously negative. If $\overline{p} < p/e$, then $\partial E(p^*)/\partial \gamma^2 > 0$ which implies that $\partial g(\cdot)/\partial E(p^*) > 0$. Therefore, an increase in γ^2 causes an increase in $g(\cdot)$ if $\overline{p} < p/e$ as shown in part a.

If, on the other hand, $\overline{p} > p/e$ then $\partial E(p^*)/\partial \gamma^2 < 0$. In this case, $\partial g(\cdot)/\partial E(p^*) < 0$. Therefore, an increase in γ^2 causes a decrease in $g(\cdot)$ when $\overline{p} > p/e$ as maintained in part b.

Proof of Proposition 4. Differentiating (3) and (4) yields

$$\frac{\partial E(p^*)}{\partial \alpha^2} = \frac{\partial E(p^*)}{\partial \theta} \frac{\partial \theta}{\partial \alpha^2} = \left[\overline{p} - \frac{p}{e} \right] \left[\frac{1}{\alpha^2} \right].$$

Because $1/\alpha^2 > 0$, $\partial E(p^*)/\partial \alpha^2 < 0$ if $\overline{p} < p/e$. An increase in α^2 then lowers $E(p^*)$, which by Proposition 1, leads to a decline in $g(\cdot)$ as maintained in part a.