which when it appsared in 1264 had a train $100^{\circ} \mathrm{long}$, to the great terror of our forelathers. Of comets which havo tails the shape is exceedingly various. Sotne have ono tail, others two ar three at different ingles, and a few havo been seen with more than threo. Some have wha: wo may call a succession of tails- one sucueeding another wit! a vacant space between every two. But let mo remark that the tails of all those comets which hive heads,--appear only at certain distances from the head. In the comet of 1811 the nebulosity was 20,000 miles from the centre of the nucleus, which was in diameter 2,700 miles.

From all the information which can be gleaned upon the subject, almost all epeculation has proceeded on the assumption, that tho tails of comets consist of matter similar to the gases on our earth, and is a continued eflux from their bodies.

The matter of the tail of a comet is of such extreme tenuity that, acerding to Sir Isaac Newton, the whole tail of a comet might be comprised in the space of a cubic inch, and that, even then, its density would not exceed that of our atmosphere. The nuclei of many are so tenuous, that sars-oven whole clusters, can be seen through them. I may state farthor that the trains of these bodies are generally turned away from the sum, but this rule is by no means universat. The comet of 1825 had two tails-one directed towards the sun, and ono from it. Much more might be said about the cometary system-but time will not aimit. We direct your attention next to the stellar univorse. In launching forth on an investigation of the surrounding glories of the higher worlds of suns and systems, a problem arises which demands solution, or will prove an insurmountable barrier :o any high achievements. Mian looks forth from his planet-home on the starlit vant around him, and seeks to ascertain the mighty laws by which those orbs subsist, and the relations which they sustain to each other. In doing this he thinks on the immensily of spaces intervening. How, in imagination, is he to reach even the nearest of those suns? How is he to wing his flight from orb to orb? Where is the measuring-rod to fathom the infinite depin? The longest line with which nature has furnished us of actually measuring, is the circumference of our own slobe. From this geometry teaches us how to find its diameter, and the diameter we empioy is a scaie with which to compare the distances of the sun and moon and the other bodies of the solar system. But Jarge as is this means of measurement in our conceptions, it is an insensible point in comparison of the distances of the apparently fixed stars, and, therefore, other ajd must be brought into requisition. The base of the earth's iliameter being too small, they have attempted to discover a change in the position of the stars when viewed from the earth in two opposite points of its orbit, with a base of nearly 200 millions of a:tles; and if a parallactic angle of the smallest measure could be obtaned-the distances of such stars might be computed. Sirus was one of the first tried with this immense base lime of 200 millions of miles but with no success. But astronomers persevered, and at length, in our own tume, resjonses carise from several points almost at once. By Professor Henderson it was ascertaitied that the star of the constellation Centaur had a parallax of a full second,-establishing its distance in miles at about nimeteen millions of millions. Afterwards, Professor Bessel, of Konigsberg, assigned a parallax of thirty-one hundreths of a second to the double star 61 Cygni, placing it at a distance of nearly 670,000 times the distance ot the earth from the sun,-a distance which would require nume years and a quatter for a ray of light to traverse. By farther researches, this conclusion has been confirmed. Another star in the constellation Ursa Major, extibits a parallax of $\frac{3}{5}$ of a second: and several others have had smaller parallaxes assigned them. By perseverance and careful computation, it is found that Sirius shows a parallactic displacement of a quarter of a second, which indicates a distance greater than that ot 61 Cygni. Vega in Lyra is supposed to have a parallax of about the same amount. In the present state of our knowledge, it woukd appear that the brightest slars are not always the neatest to the solar system. It has been considered from recontite investigations, that the average distance of a star of the first magnitude from the earth is 986,000 radii of our annual obbit-a distance so immense that it would take light $15 \frac{1}{2}$ years 10 traverse; and from a star of the sixth magnitude 120 years. If then, the distances of the majority of stars visible to the naked eye are so enormously great, how are we to estimate our distance from those minute points of light disceraible only by Rosse's telescope? The conclusion is forced upon us that we do no see them, as they appeared a few years ago, or even durnng the life-time of man, but witn the rays which proceeded from them several thousand years ago. What an idea this consideratoon gives us of the immensity of tho stellar-universe! So mighty are the distances thus opoued up to our contemplation, and so insignificant
is this world in the comparison, that were the globe, with all its myrads sunk into annihilation, it would be a thing unknown ir the stellar leavens, or where linown-known only as a little star that had ceased to twinkle. It is no easy lask for even the astronomer to gatin conceptions of the gigantio theme defore him at all adequate to its vast proportions. What thoughts must burst upon the mind, when it, for the first time, attempt:; to grasp the great fact of the immensity of the universo ! What feelings, too deep for utterance, and even for tears, overwhelm tho soul, at the perception of the thonght, that earth is but an atom in the awful expanse of creation, and we but dust upon it! The vast spaces, the enormons magnitudes, the surpassing effulgences, the dazaling splondours, the amazing diversity and complexity, and yet the unity and harmony of all, communicato delights and longings which are almost painful, and the entire man is fain, for very self-conservation to melt into a spiritual swoon of wouder. A chemist once stood with an astronomer upon his watch-tower: the eye of a telescope was bemt upon a donbla star, a system of two suns of different coloured radiances, and we know not how many planets apiece, revolving round one another: the light by which the friends betreld these sun-stars had taken at least 30 jears to come to the earth; it had been coming, alld ait the rate of 195,000 miles in a second, while they had been growing from chillhood to manhood; and now their conversation was all about the celestial organism, of which it was a single pulse. "If I truly and presently believed all we have been saying," said the chemist, "I sliould surely die where I stand, and pass away to God by ecolution." "Ah," said the master of the observatory, "we know these things, but we can hardly be said to believe them. Their vastnesses-lheir inscrutable mysteries, dazzle and bewilder the very eye of belief! From distance, let us now proceed to magnitude. On account of the immense distances of the stars, it is impossible to form any correct idea of their actual magnitudes, by direct computation. Hence their sizes can be determined only by their light and distances compared with that of the sun; and Dr. Wallaston has found by photometrical experiments, that the light of Sirius, the bightest of the fixed stars, is to that of the sun as one to about $20,000,000$. Now the proportion of light received from any luminous body, beng inversely as the squase of its distance, it follows that the sun would require to be removed to 141,100 (he square root of the above number) times its actual distance, in order to make its light equal to that of Sirius. Dr. Wallaston, assuming the smallest hinit of ths parallax, which approaches moro nearly to the truth, supposes the light of Sirius to be equal to fourteen suns!-If this be irue, or even approximates to the truth, what an idea does it give us of the glory and majesty and omnific power of Him who brought it into existence, and clolled it with its glory, " by the breath of His mouth - who commanded, and it stood fast."

Passing the asterism of starf, which may not be very interesting to my audience, I proceed to notice some other thing in the stellar universe more attractive and, perhaps, easier remembered.

On examining the slars with telescopes of considerable power, many of them are found to be composed of two or more stars placed cuntiguously to each other, or of which the distance subtends a very minute angle. And we have many instances of two etars whose angle of posilion so varies as to indicate a motion of revolution about a conmon centre, and in this case the two stars formwhat astronomers call a binary system-performing to each other the office of planet and sun-yet both suns. Motions have been so rapul, with some of these as to becone measurable within short periods of time; and at certain epochs the feebler star has been observed to diampear - either on passing behind or before its primary; or by approaching so near it, that its light has been absorbed by that of the other. The number of double stars yet discovered is estimated at about 6000.
How wonderful are the revelations which astronomy unfolds, may be gathered from the fact that, when we thus epeak of double star systems, and allude 10 it as one of ordinary interest, we are in truth, recording the astounding fact, that suns recolve round suns, und vast systems of suns, around others as vast; that vast as are the planctary systems, in all their proportions, yet that these aro but as a tinj speck in the great universe of God, in which all suns and all systems sustain relations to one another so simple, and yet so giganisc, that they may be expressed in a sentence, but which our mighttest arithmetic and most comprehensive imaginings cannot fully explain. It is a wonderful thought, that a globe as large as those in our own soliar system should revolve around the ceniral orb at the rate of many thousand miles an hour; but how overpowering is the conception of a sun encircled with a retinue of vast planets, satellites and comels, cach in sapid motion, sweeping through the universe at a speed with which those of our planetary

