Farm Weights and Measures．

At the request of a correspondent，we subjoin th rules ror measuring various agricultural commodi－ ties in the bulk，also for measuring land，and the stanased weights of the principal grains，\＆c．The information thas condensed may have appeared at different times in former numbers of this journal， but，our correspondent suggests，it will be con－ veniout for many farmers to havo it collected in a convenient form for reference．With regard to some of the matters，no infallible rule can be given，and much ts necessarily left to the judgment．In such cases as eatimating the weight of cattle by measure－ ment，tor instance，the results are not always correct， and it is by the practised eye and experienced judg－ ment，rather than by any arithmetical calculation， that the most successful drovers and butchers form their opinions and regulate their operations．

to meagure hand．

To find the area of a square or oblong piece of land，measure the length and breadth in rods（ $16 \frac{1}{\mathrm{f}} \mathrm{ft}$ ．）； multiply the two together，and divide the product by 160，which will give the number of acres in the lot． If the shape of the land be triangular，with one corner square，to use a common expression，proceed as above，and take one－half the product as the area of the triangle．In measuring irregular fields，di－ vide the space into parailelograms and triangles， ascertain the area of each，and the sum of the whole will give the total area．
The following rules also embrace a large number of the cases requiring surface or land measure．
To find the area af a triangle．－Multiply the base by half the altitude，and the product willbe tho area． By the altitude is meantaline from one
angle drawn perpendicular to the oppo－ sito－nde ma base．

Tofind twi larea of a parallelogram．－（A four－sided figare with opposite sides parallel．）－Multiply the base by the altitude，and the product will be the area．By the altitude，in this instance，is meant the perpendicular distance＇，etween any two opposite sides．

1st．	10	16.5	20	30	33	40	50	60	70	80		100	110	120		140	
10	${ }^{38675}$	S006）	${ }^{7} 7046$		1002	1.	－115	， 613	\％ict	${ }^{2.91594}$	3．060		${ }^{4.050}$	40， 4.408			
	16.5	${ }_{\text {l }}^{1.0006}$	．020	1．014	${ }^{2.0025}$	2．369	${ }^{3.080} 0$		${ }^{4.025}$	\％ 4.888	｜isil｜		\％ 6.6016	－ 66	\％	． 0383	
		20		${ }_{\text {20，}}^{2023}$	${ }_{\text {20，}}^{2.452}$	，		dit	${ }_{5}^{5.142}$		包 $\widehat{0.011}$	${ }^{7} .956$	${ }_{\text {8，}}^{\text {8，080 }}$	500	0.055	${ }^{10.2838}$	
2d．	150		30	${ }_{\text {3 }}^{3.000}$	． 3.02	4．047	家．514，	$\frac{0.012}{0.15}$		，	9．011	1.	${ }_{\text {120，}}^{10,58}$	－19			
150	． 6.	160		33	${ }_{\text {4，}}^{\text {i．} 0200}$	． 0	c．0．01	\％	8．985	\％	${ }_{\text {a }}^{100}$	，	．	14509	（15．768	$5 \sqrt{60.97}$	${ }_{\substack{18115 \\ 1136}}$
160	${ }^{88} 8$		170		40	${ }^{5.887 \%}$	${ }^{7} .745$	\％ 8.815		lintiz	${ }^{10852}$	${ }_{6}$	边 1.1016	coice	1919	${ }^{20.586}$	${ }^{22.07}$
170	${ }^{8.8}$	${ }_{6}^{6,924}$	To	180		50	0．057	${ }^{2}$		．0918	10	$\xrightarrow{18.384} 1$	［0．20			${ }^{2.5067}$	222
180		${ }^{6} 611$	1－0：5	． 7128	190		60		${ }_{\substack{15 \\ i x, 40}}$	， 17.63	$\xrightarrow{19.850}$		（2， 2	cela	${ }^{28.65}$	len	206
190	$\left\lvert\, \begin{gathered} 10.6 .69 \\ \hline 1062 \end{gathered}\right.$	$8(1100012$		${ }^{125061}$	$\xrightarrow{12288}$	200		70	${ }^{11.00}$	20，	20，	\％		2s8	39．43	${ }_{\text {3200 }}$	5in
200		117.			$\stackrel{1}{838}$	$\left[\begin{array}{l} 149098 \\ \mid-908 \end{array}\right]$	210		80	${ }_{\substack{236150}}^{23}$	20．45	53， 1835	（1）	［32		12012	
210	${ }^{115}$	203413	${ }^{13181.120}$		$\xrightarrow{180.55}$	， 94.24	${ }^{191.028}$	220		90	29750	（\％）	6	¢ ${ }^{86}$	2885	46，28	59
280	${ }^{1312025}$					$\xrightarrow{121.01010}$	$\begin{aligned} & 10.10 .09 \\ & 0.000 \end{aligned}$		230		100	0	40，400	40			－${ }^{10}$
230	$0 \cdot \frac{12,7520}{12020}$	$0 \cdot[848.12$	143.0		\％	${ }_{\text {cose }}^{18.060}$	177	${ }^{1 / 250}$	${ }^{1}$	240		110	（ 4.44	－0．038	3283	${ }_{\text {ckis }}^{5655}$	\％ 6.8
240	${ }^{13822054}$	$5 \cdot \frac{148006}{1206}$	${ }^{14086}$		（10．074	\mid	${ }^{1851.15}$		209		250		120	20	Tisi	${ }_{\substack{6.787 \\ 3887}}$	122
250	\mid	${ }_{40}^{120.092}$	1501010		1.000	1.148				${ }_{1}^{22.3 .38}$	1.434	260		130	${ }^{62888}$		
260	${ }^{138238}$	［1328］	$\stackrel{102.23}{1.015}$	1.074	｜ 18.2023	$\sqrt{20.092}$	$\begin{array}{l\|l} \hline 9 & 200.54 \\ \hline & 1.253 \end{array}$		1，373			1．20 1.565	270		140	$\begin{aligned} & 7.99 \\ & \hline 4.999 \end{aligned}$	
270	9				$\stackrel{18}{18,42} 1$	$\xrightarrow{108.34}$	${ }^{20} 20.268$					293： 2.258 .641	$1{ }^{4} 4$	280		150	${ }^{22665}$
280		${ }^{10,56} 1$		［188．1．	$\xrightarrow{105.40} 1$	${ }^{205.268}$	21．950	， $0_{0} 0_{1.144}^{20.14}$	${ }_{46} 4$	（ 5	，${ }^{3} 3$		${ }^{1}$	，is6 1.8	290		
290	$\underbrace{120.785}$	${ }^{\text {a }}$	${ }^{181.08}{ }^{1.182}$	$\xrightarrow{191.738}$	${ }_{102085}^{20.288}$	［1．393	${ }^{29}$			［10）	，	${ }^{30}$					
300	${ }^{105.293}$	${ }^{1} 120$	1.171	1．240	${ }_{\text {a }}$		1．446	， 16.12 .16	$0^{20} 12.54$	${ }_{4}^{20.4} \mid$	退，	20， 1.21					310
310		\％ 18.139			12，		3 ${ }^{230.194}$	${ }_{29}^{250.506}$					何	ceay		＋	

To find the arca of a traperoid．－Λ
fonr－sided figure with only wo sides parallel）－Muliply half the sam of the product is the are
To finel the area of a Trapesium．－－（A our－sided figure which has no two sides parallel．）－Divide the trapezium into two triangles by a diagonal，or line
drawn between two opposite angles， drawn between two opposite angles，
then fin！the areas of these riangles； he sum will be the area of the tra－
 pezium．
The following table，clipped from the New England Farmer，will be found very convenient for ascertain ing the area of small square or oblong plots of land． The larger figares on the margin and diagonal，repre sent the measurement in feet，as taken o：l the ground． The area given in smaller figures is expressed in square rods by the upper number，and in acres by the lower number．
There are two tables given below，having no con－ in the with each other，except that the darke in the at corresponding intervals．In the first table the width of the piece of land，expressed in feet，must－be looked for in the diagonal row of darker figures，the length in the horizontal row of darker figures at the top．In the second table the width must be looked for in the diagonal row of clarker figures，and the length in the vertical column of darker figures at the eft．The area will be found below the one and opposite the other．
＇Io illustrate the use of the table：－Suppose we wish to know the contents in rods and in acres of a piece of land 140 feet long by eighty feet wide．We look in the upper table for 140 in the top row of dark frures，and find it at the top of the last，column but onc．Following that column down opposite to 80 in the upper diagonal row of dark figures，and we find it contains 41.14 square rods，or .2571 acres． Suppose we have another piece just twice as long and twice as wide；we look in the lower cable for the length， 0 feet，in the vertical column of dark figures， and for the width， 160 feet，in the lower diagonal row，and find them at the head of the second column then following that column down opposite 280，we find the area to be 164.55 rods，or 1.065 acres
to meabike hay an the stack or mow．
If it be a square or oblong stack，with a pitched roof，measure the height in feet from the base to the cares，add to this balf the height from the caves to the ridge，to find the mean height；multiply the height by the breadth，and the prodnct by the length． Divide the gross prodnct by 27，and the quotient will be the number of cubic yards in the stack．The estimate of the total weight mnst depend upon the supposed weight of a eubic yard；this will neces－ sarily vary according to the time allowed for th： stack to settle．In an old stack the hay is much more compact than in one recently built．A pretty correct estimate will be gained by allowing 851bs．to the cubic yard in the new stack，and 1001bs．in one that has stood a few months，and 112lbs．If it has stood more than a year．To ascertain the reight of hay in the stack，multiply the number of cubis yards by the number of pounds allowed，and the product will give the contents of the stack in pounds；divido by 2,000 ，and the quotient will give the number of tons．To ascertain the weight of hay in a round stack with a conical top，find the height to the cares and add one－third of the remainder to obtain the mean leight of the whole．Measure the girth；square this dimension（that is，multiply it by itself），and mul－ tiply the product by the decimal－0795．This will give the area of the base．Multiply the area by the mean height，and the product will be the contents of the stack，in cubic feet，divide by twenty－seven and we obtain the number of cubic yards．Multiply this as before，by the number of pounds allowed to the yard，and the product will give the gross weight in pounds．To estimate the contents of a mow wher the top surface of the hay is level，the process is the same as with the square atack，or rick，omitting the allowance for the sloping roof．

to meastre grain an the bin．

Multiply the length by the width，and theirproduct by the height in inches；divide by 2,150 （the numbet of square inches in a bushel），and the product will give the number of bashels in tho bin．

to measurs corn in tie crib．

Measure the length，width，and depth of the crib in feet；multiply these three dimensions together， and the product by 4；cut off the last right land figure：those to the left express the number of bushels of unshelled corn．If measured in inches multiply the three dimensions together，and divide the pro duct by 4，300；the quotient will be the number of bushels．
to meascre roots in the pit on root－house．
To estimate the quantity of potatoes，turnips，or other roots in a pit，or bin，or root－house，ascertain the cubic dimensions，either in inches or feet，as in the case of small grain or corn，making allowance for the slope of the ridge by measuring only half the height，or so mugh of it as would be required to level the top and have a solid cubic heap：
Of the amount estimated as for small grain take three－quarters，which will give the quantity of roots；or if meas ured in feet according to the rule for corn in the crib，add one－half the amount，and the sum will be the quantity of roots．Thus a space that would tol twenty bushels of corn in the ear，would hold thirty bushels of roots，and forty of grain．
to estimate the whiget of cattle by measurement．
In making use of the following rules，the regularity of the shape and the condition of the animal must be taken into account．A deduction must be mado if the flank is poor，and something over may be allowed in the case of very fat cattle．The mode prescribed will be more readily understood by the aid of the accompanying figure

Messure，with a tape line，from the top of the shoulder c ，to the tall head c ，and mark this for tho length；then measure round the body at f ，immedi－ ately bchind the shoulder，and mark this for the girth． Matip＇？the square of the girth in inches by the length in inches，and diride the product by 7．344，and ihe quotient is the weightin imperialstones（eightpounds）． Or，square the girth in feet，and multiply it by the Or，square the girin in feet，and multipiy it
length in feet；multiply again by the decimal .238 ， length in feet；multiply again by the decim
and the sum is the weight in imperial stones．

