6.1.4 Computer Simulation of Atmospheric Chemistry

A key problem underlying the development and evaluation of kinetic mechanisms for atmospheric chemistry is determining the sensitivity of the concentration predictions to those uncertain aspects of the reaction scheme. Such a determination can serve as a valuable guide for future experimental studies and for identifying those parameters that, when varied within accepted bounds, will be most influential on the predictions of the mechanism.

Although the qualitative aspects of the chemistry of the polluted troposphere appear to be reasonably well understood, there are many important details that still need to be investigated before a complete quantitative understanding of the photochemical smog system is possible. Several groups 4-8 have formulated chemical reaction mechanisms for polluted tropospheric chemistry. Some of these are based on specific surrogate hydrocarbon chemistries; in others, attempts have been made to simulate the complex ambient atmospheric system by representing the general features of the hydrocarbon chemistry. All mechanisms contain aspects of uncertainty, whether in unknown rate constants, in the importance of competing reaction paths, or in the manner of representing the reaction of a generalized species. The measure of the accuracy of a mechanism is usually based on the extent of agreement between predicted concentration profiles and those generated experimentally in smog chambers. But here also, the inherent uncertainty of the

I-75

a star

1.30

HE& H