133 From the top of a mountain, h miles high the visible hc.izon appeared depressed adegrees; it is required to show that, if d be the distance of the boundary of the visible horizon, and D the diameter of the earth, $d = h \cot \frac{1}{2} a$; $D + h = \cot \frac{1}{2} a$. Let A B

be the height of the mountain, BC the diameter of the earth; \leq DAF the dip, and AF the distance of the horizon. Join CF and FB, and produce them to meet a line through A at r < sto ABC in D and E. Now the \geq D is common to the

r < d triangles D F E and D E C; $\therefore < C = < E$; but < A F E = < C; $\therefore A F E = E$; hence A F.E and A E F are each = $\frac{1}{2}$ D A F = $\frac{1}{2}a$, and A F = A E. Again < D is the complement of < E, and A F D the comp. of A F E; hence < A F D = D and A F =