
death, I have found that in the first periods of anæsthesia the blood-pressure is usually elevated, and that it is usually quite high at a time when the respirations are very shallow and imperfect. and the dark color of the blood shows that it is heavily charged with carbonic acid. It is not, however, very rare for the blood-pressure to remain near the norm, and I have seen the bloodpressure begin to fall in the very first stages of ether anæsthesia; moreover, in at least two experiments death occurred from syncope, the respiration continuing for one or two minutes after the complete cessation of the circulation. In an experiment in which the fall of the blood-pressure was most pronounced, and the arrest of heart most complete, the dog was sick from the mange, and it is possible that the weakened heart was more susceptible than is the normal heart to the depressing influence of ether.



Tracing showing respiratory movements, B, registered one and a quarter minutes after circulation had fallen as shown in A during death from ether in the dog.

So far, then, as concerns the method in which ether and chloroform kill, I claim most urgently that there is no contradiction between the results as obtained by the bedside and in the physiological laboratories, and that a complete, broad study of the clinical and experimental evidence leads to one conclusion, namely, that chloroform and ether are capable of paralyzing the respiration and the circulation; that in some cases one function, in other cases the other function, is primarily arrested; but that ether is less prone to produce a primary arrest of the heart than is chloroform.

In the discussion of the second point which I have raised, namely, the comparative fatality attending the use of ether and chloroform, I shall not occupy time with any elaborate setting-forth of the clinical evidence. In regard to the number of recorded deaths, I shall content myself with accepting the latest statistics at hand, namely, those collected by Dr. Laurence Turnbull, who has found 375 deaths reported from chloroform, and 52 from ether. I do not believe that these figures nearly represent the total mortality; I doubt very much whether one-third of the deaths from anæsthesia are reported; certainly not onethird of the cases I have had personal knowledge of have been publicly recorded. Moreover, the pressure to conceal deaths from chloroform is greater than when the lethal result is due to ether. The surgeon who uses ether feels that he has employed the safest anæsthetic, and that he will receive no blame if a death occurs from it, and feels also that he has a rare case to put on record,

which will give his own name a permanent place in anæsthetic literature; whereas the surgeon who uses chloroform knows that if death occurs from the anæsthetic, a very large proportion of the profession, at least in the United States, will condemn him either in public or secret, for the use of this drug, and that he will be fortunate if he escape being publicly condemned by a coroner's jury. Moreover, deaths from chloroform are only too common, so that the surgeon has nothing to gain and much to lose by publication of a chloroform death, and if possessed of the average human nature, holds his peace. The Coroner's Physician of Philadelphia, Dr. Formad, informs me that he has made autopsies in 15 cases of ether death, only 3 of which have been reported in medical journals; how many chloroform deaths have been lost in eternal quiet?

It seems to me impossible to get at the exact number of anæsthetic deaths, or the proportionate fatality of ether and chloroform. Lyman considers that in regard to chloroform, the ratio of deaths to inhalations is 1 in 5860; Richardson, that it is 1 in 2500 to 3000. Andrews puts it for ether, at 1 in 23,204; and Lyman, at 1 in 16,542.

Without claiming strict accuracy for any of these figures, I think it can be asserted that the ratio of deaths from chloroform is probably at least four or five times that of deaths from ether.

When we come to study the effects of chloroform upon the lower animals, we find that it varies very distinctly in its action on the different species. The cat seems to withstand the fatal influences of chloroform with a power worthy of its reputed "nine lives." Many years ago, Professor Schiff called attention to the fact that the use of chloroform as an anæsthetic in the dog is usually attended with the loss of many animals. Professor Martin, of the Johns Hopkins University, writes me that the margin between complete chloroform anæsthesia in the dog, and chloroform death, is a very narrow one. This certainly is our experience in the University of Pennsylvania; we have never been able to use chloroform as an anæsthetic without losing a very large proportion of our dogs.

Clinical and experimental results—i. e., the results of experiments made in the physiological laboratory upon the lower animal, and the results of experiments made in the amphitheatre upon the higher animal, Man-are again concordant. Chloroform is much more inimical than ether to The cause of this singular fatality is animal life. not, however, chiefly the cardiac action of chloro-Chloroform is more apt to cause cardiac arrest than is ether, but it is also much more prone than is ether to cause death by failure of the respiration. Almost invariably, when ether is withdrawn before the dog is absolutely in the grasp of death, recovery occurs; but over and over again I have noticed that although the chlore-