tion, say a half or a third, can be assimilated, the value of the food is to be measured by that portion only, and not by the whole. The more natritive foods are valuable not merely on account of the large proportion of useful substances they contain, but also because they are easily accessible to the animal. Thus in the turnio by far the greater part of its nutritive matters is soluble in water, little more than 2 per cent, of its weight being insoluble in that flaid and of this small quantity a considerable troportion is dissolved by the juices of the stomach. In the cereats, although but a small proportion is directly solable in water, the chemical changes they undergo during digestion convert them easily into a condition in which they can be absorbed. But it is quite otherwise with straws. In them the chief nutritive matters are partly soluble and partly insoluble in water, and they contain besides a large proportion of inert woody fibre. It will be easily understood that the substances soluble in water will be readily assimilated by the animal; and even those which are insoluble might, and probably would, also be taken up if it were not for the woody fibre which surrounds and protects them, and if it does not altogether prevent, must certainly greatly diminish the chances of their utility. Even in the most valuable food but a small proportion of the nutritive matters present is assimilated, and does not admit of a doubt that the portion soluble in water, or that which is most radily converted into a soluble state, will alone te absorbed.

In straws, it may be fairly anticipated that the soluble part is likely to be of use, and that the other portion, though it may, if rendered soluble, become useful, is so theroughly protected from the action of the gastric juice by the woody fibre in which it is enveloped that in all probability it generally, if not invariably, escapes assimilation. In consideration of these facts it appeared to me that all the necessary requirements would be fulfilled by determining separately the quantities of each group of nutritive elected is not all the straws which are soluble and insoluble in water.

Is following out this view of the matter, I at fixatempted to effect the separation by mabusting the straw in cold water, but it was soon ford that in this way only a small quantity of plable matters could be obtained, unless they For left in contact for a long time, and then a secies of fermentation was apt to occur, which pluely altered the straw, and defeated the obthin view. On the other hand, boiling water uapplicable, owing to its producing coapation of some of the albuminous compounds. After some trials a temperature of 140 degs. threnheit was adopted, and was found sufficibly high to ensure the extraction of all soluble allers, without running the risk of rendering any the albaminous compounds insoluble. The first

fluid obtained in this way, by adding to the straw about ten times its weight of water, was brownish coloured and slightly mucilaginous, and contained the greater part of the soluble matters. Three or four subsequent additions of water were found sufficient for their complete extraction. The total amount of soluble and insoluble matters was thus determined, and the proportions of soluble and insoluble albuminous compounds were ascertained by determining the total nitrogen and the amount left in the insoluble matter. Owing to the bulky nature of straw, and the small proportion of nitrogen, this required very great care, and duplicate experiments were made, with closely corresponding results.

Wheat Straw.—Samples of wheat straw, of good ordinary quality from East Lothian and from the neighbourhood of Midhurst in Kent have been ex-mined.

	Mr. Harvey, Whittingham,	Mr. S. Skirving Camptown.	Kent.
Soluble in Water-			
Respiratory elements	2.68	6 68	5.26
*Albuminous compounds	0.86	0.37	1.37
Ash	3.38	1.55	4.97
Insoluble in Water-			
Oil	0 80	1.00	1.50
Respiratory elements	44 88	36.43	35.79
4 Albuminous compounds	0.51	1.12	1.00
Woody fibre	32.88	34.78	35.01
A>h	2 82	6.19	1.35
Water	10.62	10.93	11.16
	99.43	99.35 1	00 39
*Containing nitrogen	0.139		.220
+Containing nitrogen	0.082		0.160
Total nitrogen	0.221		0 380
" abuminous compo-			2.370
" respiratory element			1.050

In examining these analyses, it is impossible to fail being struck by the small proportion of matters soluble in water which wheat straw contain. Excluding the ash, they amount in the first sample to no more than 31 per cent,, and in the other two to 7 and 61 per cent. respectively. To these the large portion of soluble ash forms a very remarkable contrast, in two of the samples greatly exceeding the insoluble ash, and in the third (that from Camptown), though it falls short of the insoluble part, it must still be looked upon as proportionately large. The largest individual constituent in all these straws is the insoluble respiratory elements, and they materially exceed the woody fibre in quantity, a result for which I was not prepared. It is interesting to notice that, if we take the total albuminous and respiratory compounds, the difference between the specimens is by no means large, and the two East Lathian straws in particular are almost absolutely identical. It is only when the relative quantities of soluble and insoluble matters are taken into account that the difference becomes apparent.

Barley Straw—Samples of barley straw were obtained from the same localities as the wheat